Fall 2008 EE 410/510:
Microfabrication and Semiconductor Processes
M W 12:45 PM – 2:20 PM
EB 239 Engineering Bldg.

Instructor: John D. Williams, Ph.D.
Assistant Professor of Electrical and Computer Engineering
Associate Director of the Nano and Micro Devices Center
University of Alabama in Huntsville
406 Optics Building
Huntsville, AL 35899
Phone: (256) 824-2898
Fax: (256) 824-2898
email: williams@eng.uah.edu

Tables and Charts taken from Cambell, Science and Engineering of Microelectronic Fabrication, Oxford 2001
Implantation images taken from Axcelis Corporation.
Ion Implantation

Penn State Graphical Description of Ion Implantation: http://courses.ee.psu.edu/ruzyllo/ionimplant/

Online chapter of ion implantation process parameters: http://www.iue.tuwien.ac.at/phd/hoessinger/node20.html

Freeware for 1-D implant predictions: http://www.gs68.de/software/simplant/index.html
Arc Chamber

- Ion source: Arc Chamber
 - Feed gas of implant species using mass flow controllers
 - BF_3, AsH_3, PH_3 for Si
 - SiH_4 and H_2 for GaAs
 - Solid sources can be heated to vapor form and controlled via a shutter if needed
 - Molecules flow past a hot charged filament in a magnetic field to produce ionization.
 - Positive ions are accelerated and exit the chamber through a slit, resulting in an ion beam a few mm by 1 cm across
Ion Separation

- Ions are separated by atomic mass using a large magnetic field.
- The field bends the ion beam by an angle ϕ which does NOT have to be 90°.
- In fact, it is possible to conceive of an implanter with multiple exit slits allowing for mass production of devices implanted with different atomic masses.

As ions enter the analyzer magnet,

$$\frac{Mv^2}{r} = qvB$$

$$v = \sqrt{\frac{2E}{M}} = \sqrt{\frac{2qV_{ext}}{M}}$$

$$r = \frac{Mv}{qB} = \frac{1}{B} \sqrt{\frac{2M}{q} V_{ext}}$$

$$D = \frac{1}{2} r \frac{\delta M}{M} \left[1 - \cos \phi + \frac{L}{r} \sin \phi \right]$$
Beam Steering

- After separation
- Ions are accelerated by RF bias fields
- Magnetic lenses can be used to focus the beam
- Electronic biasing plates are used to steer and scan the beam over a limited range
- Beam exits through a window and implants high energy ions onto substrate
- Substrate can also be scanned across the beam as needed
Ion Penetration

Where S_e and S_n are the energy losses due to electronic and nuclear stopping potentials

Electronic stopping potential due to scattering of ions from electron within the lattice

$$S_e = \left. \frac{dE}{dx} \right|_e = \sqrt{\frac{Z_i Z_t}{M_i^3 M_t}} \frac{(M_i + M_t)^{3/2}}{(Z_i^{2/3} + Z_t^{2/3})^{3/2}} \sqrt{E}$$

Nuclear stopping potential due to scattering from nuclei in the lattice

$$S_n^o \approx 2.8 \times 10^{-15} \text{ eV/cm}^2 \times \frac{Z_i Z_t}{Z^{1/3}} \frac{M_i}{M_i + M_t}$$

$$Z = \left(Z_i^{2/3} + Z_t^{2/3} \right)^{3/2}$$

E = energy of the implanted ions (eV)
Z = charge number of protons in the atom
M = atomic mass
i = incident ion
t = target material
Implantation Range

- Penetration is estimated using range and standard deviation equations

\[R_p = \int_0^{R_p} dx = \int_{E_0}^0 \frac{dE}{dE/dx} = \int_{E_0}^0 \frac{dE}{S_n + S_e} \]

\[\Delta R_p \approx \frac{2}{3} R_p \left[\sqrt{\frac{M_l M_m}{M_l + M_m}} \right] \]

- Impurity concentration as a function of depth is

\[N(x) = \frac{\phi}{\sqrt{2\pi\Delta R_p}} e^{-\frac{(x-R_p)^2}{2\Delta R_p^2}} \]
Figure 5-9 Projected range (left axis) and standard deviation (right axis) for (a) n-type, (b) p-type, and (c) other species into a silicon substrate, and (d) n-type and (e) p-type dopants into a GaAs substrate, and several implants into (f) SiO₂ and (g) AZ111 photoresist (data from Gibbons et al.).
Implantation Range
Channeling Effects

- Channeling is a lack of scattering due to geometrical orientation of the target material with respect to the incident beam.
- Occurs when ion velocity is parallel to a major crystal orientation.
- Once in a channel, the ion will continue in that direction making many glancing internal collisions that are early elastic until coming to rest or de-channels due to a crystal defect or impurity.
- Effect is characterized by a critical angle.

\[\Psi = 9.73^\circ \sqrt{\frac{Z_i Z_t}{E_o d}} \]
Implantation Applications

Medium Dose Applications
- Buried channel doping
- 0.5 keV to 750 keV
- 35-65 nm ULSI

High Dose Applications
- 0.2 keV to 80 keV

The Ultra delivers effective contamination control below 1.0% in all cases, for maximum on-wafer product yield.

http://www.axcelis.com/
Implantation Applications

High Energy Applications

10 keV to 4 MeV
Channel Engineering and Transistor isolation

http://www.axcelis.com/
Quantum Computing with Single Atom Implantation

- Single atom ion implantation can be used to produce quantum computers
- Doping of one atom creates a single electron that exist in either one or two different quantum states (double well)
- The quantum information packet is called a (q-bit)
- Surface electrodes S and B control the state
- Single electron transistors (SETs) detect charge transfer between the two donors

Buried Dielectrics

- SOI wafers formed by ion implantation of O2 into Silicon followed by annealing
- 150 – 300 keV O+ does to about 2*10^{18} cm^{-2}
- Very long implantation time
- Often done on axis to take advantage of channeling effects
- Generates a nearly amorphous layer of 30% Si / 60% O_2
- To reduce damage, wafers must be heated to at least 400°C during implant
- Anneals are performed at 1300-1400°C for several hours under an deposited oxide cap
- Implanters designed for SIMOX operate at 100mA with metallic contamination held below 10^{11} cm^{-2} and pinhole density less than 0.2 cm^{-2}. Thickness uniformity is approx. 50 Ang over 6 in

Rapid Thermal Annealing

- Method for annealing materials at temperatures up to 1200°C for very short periods of time
- Typical ramp rates are 30 sec
- Process times range from 2-600 sec
- Advantages
 - Extremely fast technique
 - Single wafer processing produces best uniformity
 - Minimizes redistribution of dopants
 - Cold walls allow multiple processes to occur without contamination
 - Photochemistry can be exploited
- Disadvantages
 - Absolute temperatures are almost never known
 - Nonthermal-equilibrium process makes modeling and predicting difficult
 - Uniform heating is more critical than traditional thermal processing
 - Ramp rates
 - Internal stresses

FIG. 1. Temperature sensor signal vs time for four RTA methods. A, arc lamp; I, incandescent lamp; F, bell-jar furnace; S, susceptor furnace. Preheat region below 600 °C varies among methods. Origin of time is start of heating cycle in each case.
Rapid Thermal Annealing

- Types of RTP
 - Adiabatic: excimer laser heats surface
 - Thermal Flux: rastered electron beam
 - Isothermal: Optical illumination
- Measurement Devices
 - Pyrometry: measures thermal light intensity
 - Acoustic: measures velocity of sound in the chamber as a linear function of temperature
 - Thermocouples imbedded in SiC, Si, or Graphite susceptor plate

![Diagram](image)

FIG. 4. Configuration of sapphire light guide sensors for a ripple technique in an oven with AC-powered incandescent lamps and quartz isolation tube (after Ref. 22)