1. (30 points) Microcontroller system is using 8MHz crystal connected to XIN input and 3V power supply.

The DCO generator is connected to pin P2.5/Rosc if DCOR control bit is set.
The port pin P2.5/Rosc is selected if DCOR control bit is reset (initial state).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(DCO03)</td>
<td>(R_{\text{sel}} = 0, \text{DCO} = 3, \text{MOD} = 0, \text{DCOR} = 0, T_A = 25^\circ \text{C})</td>
<td>(V_{CC} = 2.2 \text{ V})</td>
<td>0.08</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3 \text{ V})</td>
<td>0.08</td>
<td>0.13</td>
<td>0.16</td>
<td>MHz</td>
</tr>
<tr>
<td>f(DCO13)</td>
<td>(R_{\text{sel}} = 1, \text{DCO} = 3, \text{MOD} = 0, \text{DCOR} = 0, T_A = 25^\circ \text{C})</td>
<td>(V_{CC} = 2.2 \text{ V})</td>
<td>0.14</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3 \text{ V})</td>
<td>0.24</td>
<td>0.13</td>
<td>0.16</td>
<td>MHz</td>
</tr>
<tr>
<td>f(DCO23)</td>
<td>(R_{\text{sel}} = 2, \text{DCO} = 3, \text{MOD} = 0, \text{DCOR} = 0, T_A = 25^\circ \text{C})</td>
<td>(V_{CC} = 2.2 \text{ V})</td>
<td>0.14</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3 \text{ V})</td>
<td>0.25</td>
<td>0.13</td>
<td>0.16</td>
<td>MHz</td>
</tr>
<tr>
<td>f(DCO33)</td>
<td>(R_{\text{sel}} = 3, \text{DCO} = 3, \text{MOD} = 0, \text{DCOR} = 0, T_A = 25^\circ \text{C})</td>
<td>(V_{CC} = 2.2 \text{ V})</td>
<td>0.14</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3 \text{ V})</td>
<td>0.25</td>
<td>0.13</td>
<td>0.16</td>
<td>MHz</td>
</tr>
<tr>
<td>f(DCO43)</td>
<td>(R_{\text{sel}} = 4, \text{DCO} = 3, \text{MOD} = 0, \text{DCOR} = 0, T_A = 25^\circ \text{C})</td>
<td>(V_{CC} = 2.2 \text{ V})</td>
<td>0.14</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3 \text{ V})</td>
<td>0.25</td>
<td>0.13</td>
<td>0.16</td>
<td>MHz</td>
</tr>
</tbody>
</table>
Set the following modes of operation:

a) (15 points) DC generated MCLK to 750 KHz, SMCLK to 93.75 KHz.

BCSCTL1: 0x\text{__} = \begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\text{XT2Off} & \text{XTS} & \text{DIVA}.1 & \text{DIVA}.0 & \text{XT5V} & \text{Rsel2} & \text{Rsel1} & \text{Rsel0}
\end{array}

BCSCTL2: 0x\text{__} = \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\text{SELM}.1 & \text{SELM}.0 & \text{DIVM}.1 & \text{DIVM}.0 & \text{SELS} & \text{DIVS}.1 & \text{DIVS}.0 & \text{DCOR}
\end{array}

DCOCTL: 0x\text{__} = \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\text{DCO}.2 & \text{DCO}.1 & \text{DCO}.0 & \text{MOD}.4 & \text{MOD}.3 & \text{MOD}.2 & \text{MOD}.1 & \text{MOD}.0
\end{array}

b) (15 points) Processor clock to 8MHz, ACLK to 4MHz.

BCSCTL1: 0x\text{__} = \begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\text{XT2Off} & \text{XTS} & \text{DIVA}.1 & \text{DIVA}.0 & \text{XT5V} & \text{Rsel2} & \text{Rsel1} & \text{Rsel0}
\end{array}

BCSCTL2: 0x\text{__} = \begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\text{SELM}.1 & \text{SELM}.0 & \text{DIVM}.1 & \text{DIVM}.0 & \text{SELS} & \text{DIVS}.1 & \text{DIVS}.0 & \text{DCOR}
\end{array}

DCOCTL: 0x\text{__} = \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{DCO}.2 & \text{DCO}.1 & \text{DCO}.0 & \text{MOD}.4 & \text{MOD}.3 & \text{MOD}.2 & \text{MOD}.1 & \text{MOD}.0
\end{array}

\textbf{NOTE:}
- XT5V bit should be 0.
- DCOR: use internal Rosc
- For all DIV fields:

\begin{array}{cccc}
\text{DIV field value} & 0 & 1 & 2 & 3 \\
\text{Divided by:} & 1 & 2 & 4 & 8
\end{array}
2. (15 points)
a) (5 points) What is the state (High/Low) of 68K signal lines for the following operations?

Solution:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Word read</th>
<th>Byte read, Even address</th>
<th>Byte write, Odd address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS*</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>R/W*</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>UDS*</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>LDS*</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

b) (5 points) Describe the 68000’s read cycle explaining the actions that take place and the relationship between them. Give the simplified timing diagram.

State S0	R/W*output is set high to terminate any previous write cycle.
State S1	The 68000 puts the address on the address bus. It remains valid for the duration of the read cycle.
State S2	The 68000 asserts AS* and LDS*/UDS* to indicate that the address is valid.
State S3	No signals change state.
State S4	DTACK* must go low before the end of S4, if wait states are not required.
State S5	No signals change state.
State S6	Data from the memory is latched by the 68000 at the end of S6 state.
State S7	The address and data strobes are de-asserted to terminate the read cycle.
c) (5 points) Describe the 68000’s write cycle explaining the actions that take place and the relationship between them. Give the simplified timing diagram.
3. (55 points) Design a microcomputer system with a MC68000 microprocessor that features
 1) 256KB of supervisor program memory residing at the address $04000 using 32K×8 EPROMs modules
 2) 64KB of supervisor data memory using 4K×8bit static RAM modules, and
 3) 128KB of user program and data memory using 32K×8bit static RAM modules.
All three memories reside in consecutive address windows. Design necessary logic to generate:
- Address decoding signals (CS*)
- Control signals (WE*, OE*)
Tie all OE* low. OR the CS and the R/W* to generate WE* for each chip.

The memory map follows:

<table>
<thead>
<tr>
<th>Memory</th>
<th>Address Range</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM</td>
<td>00 4000</td>
<td>0000 0000 0100 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>+3 FFFF</td>
<td>0100 1111 1111 1111</td>
</tr>
<tr>
<td>SDM</td>
<td>04 3FFF</td>
<td>0100 0100 0100 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>+0 FFFF</td>
<td>0101 1111 1111 1111</td>
</tr>
<tr>
<td>UPDM</td>
<td>05 4000</td>
<td>0101 0100 0100 0000 0000 0000</td>
</tr>
<tr>
<td></td>
<td>+1 FFFF</td>
<td>0110 1111 1111 1111</td>
</tr>
</tbody>
</table>

The address decoding for the supervisor program memory is as follows:

```
<table>
<thead>
<tr>
<th>A17-A1</th>
<th>A15-A1</th>
<th>A13-A1</th>
<th>A11-A9</th>
<th>A8-A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM</td>
<td>SPM</td>
<td>SPM</td>
<td>SPM</td>
<td>SPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Diagram:

- [Diagram of memory address decoding for SPM]
The address decoding for the user program and data memory is as follows:

The address decoding for the supervisor data memory is as follows: