Programmable Logic Devices

- Read Only Memories (ROMs)
- Programmable Logic Arrays (PLAs)
- Programmable Array Logic Devices (PALs)
3.1 Read-Only Memories

- Store binary data
 - ______________
 - ________________

- n input lines, m output lines => array of 2^n m-bit words
 - ______________

- Use ROM to implement logic functions?
 - ______________

3.1 Read-Only Memories - Basic ROM Structure
3.1 Read-Only Memories - ROM Types

- Mask-programmable ROM
 - __
 - _____________________________________

- EPROM (Erasable Programmable ROM)
 - __
 - ___
 - __

- EEPROM – Electrically Erasable PROM
 - __

- Flash memories - similar to EEPROM except they use a different charge-storage mechanism
 - usually have built-in programming and erase capability, so the data can be written to the flash memory while it is in place, without the need for a separate programmer

3.2 Programmable Logic Arrays (PLAs)

- Perform the same function as a ROM
 - n inputs and m outputs – __________________________
 - AND array – ______________________________
 - OR array – ___________________________
3.2 Programmable Logic Arrays - Example

3.2 Programmable Logic Arrays - nMOS NOR Gate

\[F_0 = \sum m(0, 1, 4, 6) = A'B' + AC' \]
3.2 Programmable Logic Arrays - AND-OR Array Equivalent

Modified Truth Table for PLA

\[F_0 = \sum m(0, 1, 4, 6) = A'B' + AC' \]
\[F_1 = \sum m(2, 3, 4, 6, 7) = B + AC' \]
\[F_2 = \sum m(0, 1, 2, 6) = A'B' + BC' \]
\[F_3 = \sum m(2, 3, 5, 6, 7) = AC + B \]

<table>
<thead>
<tr>
<th>Product Term</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A'B'</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC'</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BC'</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Using PLA: An Example

\[
F_1 = \sum m(2, 3, 5, 7, 8, 9, 10, 11, 13, 15) \quad F_1 = bd + b'c + ab'
\]
\[
F_2 = \sum m(2, 3, 5, 6, 7, 10, 11, 14, 15) \quad F_2 = c + a'bd
\]
\[
F_3 = \sum m(6, 7, 8, 9, 13, 14, 15) \quad F_3 = bc + ab'c' + abd
\]

Eight different product terms are required!?

For PLA we want to minimize the total number of product terms, not the number of product terms for each function separately!

3.2 Programmable Logic Arrays - How Many Product Terms are Needed?
Using PLA: An Example

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[F₁ = a'bd + abd + ab'c' + b'c \]
\[F₂ = a'bd + b'c + bc \]
\[F₃ = abd + ab'c' + bc \]

3.3 Programmable Array Logic (PALs)

- PAL is a special case of PLA
 - AND array is __________ and OR array is ________
- PAL is
 - less expensive
 - easier to program
3.3 Programmable Array Logic (PALs)

Unprogrammed

Programmed

• Typical PALs have
 - from 10 to 20 inputs
 - from 2 to 10 outputs
 - from 2 to 8 AND gates driving each OR gate
 - often include D flip-flops
3.3 Programmable Array Logic - Logic Diagram for 16R4 PAL - Top Half

3.3 Programmable Array Logic - Example