1.1 The Abstraction Hierarchy

• Two Domains
 – Structural -
 – Behavioral -
1.1 The Abstraction Hierarchy - Domain Examples

entity TWO_CONSECUTIVE is
 port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;

architecture DATAFLOW of TWO_CONSECUTIVE is
 signal Y1,Y0: BIT;
begin
 STATE: block((CLK = '1'and not CLK'STABLE) or R = '0')
 begin
 Y1 <= guarded '0' when R = '0' else X;
 Y0 <= guarded '0' when R = '0' else '1';
 end block STATE;
 Z <= Y0 and ((not Y1 and not X) or (Y1 and X));
end DATAFLOW;

--- Behavioral description

1.1 The Abstraction Hierarchy - Book Design Hierarchy
1.2 Textual vs. Pictorial Representations

- A hardware description language is an enhanced high-level programming language.

1.3 Types of Behavioral Descriptions

```vhdl
entity TWO_CONSECUTIVE is  
port(CLK,R,X: in BIT;Z: out BIT);  
end TWO_CONSECUTIVE;  
architecture DATAFLOW of TWO_CONSECUTIVE is  
signal Y1,Y0: BIT;  
begin  
STATE: block((CLK = '1' and not  
CLK'VALID) or R = '0')  
begin  
Y1 <= guarded '0' when R = '0' else  
X;  
Y0 <= guarded '0' when R = '0' else  
'1';  
end block STATE;  
Z <= Y0 and ((not Y1 and not X) or (Y1  
and X));  
end DATAFLOW;  
architecture ALGORITHMIC of TWO_CONSECUTIVE is  
type STATE is (S0,S1,S2);  
signal Q: STATE := S0;  
begin  
process(R,X,CLK,Q)  
begin  
if (R''EVENT and R = '0') then --reset  
event  
Q <= S0;  
elsif (CLK'EVENT and CLK = '1') then  
if  X = '0' then  
Q <= S1;  
else  
Q <= S2;  
end if;  
end if;  
if Q'EVENT or X'EVENT then --output  
function  
if (Q=S1 and X='0') or (Q=S2 and X='1')  
then  
Z <= '1';  
else  
Z <= '0';  
end if;  
end if;  
end process;  
end ALGORITHMIC;  
```
1.4 Design Process - Book View

1.4 Design Process - Alternate View
1.4 Design Process - Types of Synthesis

- English → algorithmic representation
- Algorithmic → data flow
- Algorithmic → gate level
- Data flow → gate level
- Gate level → layout

1.5 Structural Design Decomposition

(a) Full Tree Design

(b) Partial Tree Design
1.6 The Digital Design Space

Cost
Speed
Chip Area

Circuit A

Circuit B

The Big Picture

VHDL USAGE

Simulation

Any level of abstraction

Model an Existing System

Describe a New System

Behavioral or Dataflow

Synthesis Tool

Gate Level Structural Model

Model a Primitive

Model a Primitive

Layout Tool

Gate Level Structural Model w/Timing