1.1 The Abstraction Hierarchy

• Two Domains
 – Structural -
 – Behavioral -
1.1 The Abstraction Hierarchy - Domain Examples

entity TWO_CONSECUTIVE is
 port(CLK,R,X: in BIT;Z: out BIT);
end TWO_CONSECUTIVE;

architecture DATAFLOW of TWO_CONSECUTIVE is
 signal Y1,Y0: BIT;
begin
 STATE: block((CLK = '1' and not CLK'STABLE) or R = '0')
 begin
 Y1 <= guarded '0' when R = '0' else X;
 Y0 <= guarded '0' when R = '0' else '1';
 end block STATE;
 Z <= Y0 and ((not Y1 and not X) or (Y1 and X));
end DATAFLOW;

-- Behavioral description
1.2 Textual vs. Pictorial Representations

- A hardware description language is an enhanced high-level programming language.

1.3 Types of Behavioral Descriptions

entity TWO_CONSECUTIVE is
 port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;

architecture DATAFLOW of TWO_CONSECUTIVE is
 signal Y1,Y0: BIT;
begin
 STATE: block((CLK = '1'and not CLK'STABLE) or R = '0')
 begin
 Y1 <= guarded '0' when R = '0' else X;
 Y0 <= guarded '0' when R = '0' else '1';
 end block STATE;
 Z <= Y0 and ((not Y1 and not X) or (Y1 and X));
end DATAFLOW;

architecture ALGORITHMIC of TWO_CONSECUTIVE is
 type STATE is (S0,S1,S2);
 signal Q: STATE := S0;
begin
 process(R,X,CLK,Q)
 begin
 if (R''EVENT and R = '0') then --reset event
 Q <= S0;
 elsif (CLK'EVENT and CLK = '1') then
 if X = '0' then
 Q <= S1;
 else
 Q <= S2;
 end if;
 end if;
 if Q'EVENT or X'EVENT then --output function
 if (Q=S1 and X='0') or (Q=S2 and X='1') then
 Z <= '1';
 else
 Z <= '0';
 end if;
 end if;
 end process;
end ALGORITHMIC;
1.4 Design Process - Book View

Design Specification
HDL Capture
RTL Simulation
RTL Synthesis
Functional Gate Simulation
Place and Route
Post Layout Timing Simulation
Static Timing Analysis

1.4 Design Process - Alternate View
1.4 Design Process - Types of Synthesis

- English \rightarrow algorithmic representation
- Algorithmic \rightarrow data flow
- Algorithmic \rightarrow gate level
- Data flow \rightarrow gate level
- Gate level \rightarrow layout

1.5 Structural Design Decomposition
1.6 The Digital Design Space

The Big Picture

VHDL USAGE

Simulation
Any level of abstraction
Model an Existing System

Synthesis
Describe a New System
Behavioral or Dataflow

Gate Level Structural Model
Model a Primitive

Layout Tool
Gate Level Structural Model

Model a Primitive