2.1 CAD Tool Taxonomy

Legend
S - System G - Gate
Ch - Chip CR - Circuit
R - Register L - Layout
2.3 Simulators – Modeling Elements

• A __________ is a major modeling element in VHDL. The correspondence between __________ and ____________ can be ____________, ____________, or ____________.

• Example #1

 ![Digital device diagram](image1)

 ![Graphical representation](image2)

 ![VHDL process](image3)

   ```vhdl
   process(CLK,R)
   begin
     if R='0' then q <= '0';
     elsif CLK'EVENT and CLK='1'
       then Q <= D;
     end if;
   end process;
   ```

• Example #2

 ![Graphical representation](image4)

 • There is also a correspondence between _______ and ___________.
 • A process is activated when a triggering signal ___________. Non-triggering, or ___________, signals do not cause activation and are represented graphically by using an ________________.
 • Signal __________ consist of a ________ and a _________ at which that _________ is scheduled to occur (SN, V). When a value on a signal changes, that is a ________________ (processes are triggered by these).
2.4 Simulators – The Simulation System

- The simulation process proceeds as follows:
 - Initialization
 - While there are new time queue entries
 - For each current signal event
 - Trigger the appropriate process
 - Execute activated processes

- Simulator Organization
- Language Scheduling Mechanisms
- Simulation Efficiency
- A complete system consists of
 - Analysis -
 - Elaboration -

2.5 Simulation Aids

- Model Preparation
 - Straight textual entry
 - Graphical entry
 - State diagram
 - Flow chart
- Model Test Vector Development
 - Manual
 - Graphical
 - Read from file
 - Macros in simulator
- Model Debugging
 - VHDL analyzers do range checking
 - Graphical debuggers are part of the simulation environment
2.7 Synthesis Tools

- Current tools work primarily at the register level of abstraction

(a) Direct translation to iterative network.

(b) Optimization for 2-input XOR gates at maximum speed.

(c) Maximum speed implementation using 2 and 3 input XOR gates