1. (1 point) A major trend in digital design methodology is the use of a _hardware description language_ to describe and simulate the functionality of a digital circuit.

2. (1 point) _Propagation delay_ is the average transition delay time for a signal to propagate from input to output.

3. (1 point) A _parity bit_ is an extra bit included with a binary message to make the number of 1’s either odd or even.

4. (1 point) A multiplexer can be constructed with three-state gates: high, low and _high impedance_.

5. (1 point) A register capable of transferring the binary information held in each cell to its neighboring cell, in a selected direction, is called a _shift register_.

6. (5 points) Convert (10221013) to decimal:

 \[1022101_3 = 1 \times 3^6 + 0 \times 3^5 + 2 \times 3^4 + 1 \times 3^3 + 0 \times 3^2 + 0 \times 3^1 + 1 \times 3^0\]
 \[= 1 \times 729 + 0 \times 243 + 2 \times 81 + 1 \times 27 + 0 \times 9 + 0 \times 3 + 1 \times 1\]
 \[= 729 + 0 + 162 + 54 + 9 + 0 + 1 = 955_{10}\]

7. (10 points) Convert decimal +18 and +25 to binary, using the signed-2’s-complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (+18) + (-25). Convert the answer back to decimal and verify that it is correct.

\[
\begin{array}{cccc}
J & K & Q(t+1) & D & Q(t+1) & T & Q(t+1) \\
0 & 0 & Q(t) & 0 & 0 & 0 & Q(t) \\
0 & 1 & 0 & 1 & 1 & 1 & Q'(t) \\
1 & 0 & 1 & & & & \\
1 & 1 & Q'(t) & & & & \\
\end{array}
\]

\[
\begin{align*}
+18 &= 001 \ 0010 \\
+25 &= 001 \ 1001 \\
-25 &= -32 + 7 \\
-25 &= 10 \ 0111 \\
111 \ 1001 &= 1 \times -2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\
&= -64 + 32 + 16 + 8 + 0 + 0 + 1 \\
&= -7 \checkmark
\end{align*}
\]
8. (10 points) Construct an 8×1 multiplexer with as many 2×1 multiplexers and any additional logic that you might need. Use block diagrams for the components.

![Block diagram of the multiplexer](image)

9. (15 points) Design a circuit that implements the following truth table. You do not have to draw a circuit diagram.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$A = x'y' + x'z + y'z + xyz'$
$B = xz + x'y$
$C = xy'z' + x'y'z + xyz$
10. (15 points) An XY flip-flop has four operations, clear to 0, complement, no change, and set to 1, when inputs are X and Y are 00, 01, 10, and 11, respectively.
 (a) Tabulate the characteristic table.
 (b) Derive the characteristic equation.
 (c) Tabulate the excitation table.

 (a) $\begin{array}{cccc}
 X & Y & Q(t) & Q(t+1) \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 \end{array}$

 (b) $Q(t+1) = XQ(t) + YQ'(t)$

11. (20 points) Design a 4-bit counter which counts in the sequence 0000, 0100, 0110, 0010, 0011, 0111, 1111, 1110, 1010, 1011, 1001, 0001, 0000 using clocked D flip-flops. You do not have to draw the circuit diagram. Is the counter self-correcting if it comes up in an unused state?

Current State	Next State	D_A	D_B	D_C	D_D
 0000 | 0100 | 0 | 1 | 0 | 0 |
 0100 | 0110 | 0 | 1 | 1 | 0 |
 0110 | 0010 | 0 | 0 | 1 | 0 |
 0010 | 0011 | 0 | 0 | 1 | 1 |
 0011 | 0111 | 0 | 1 | 1 | 1 |
 0111 | 1111 | 1 | 1 | 1 | 1 |
 1111 | 0100 | 1 | 0 | 1 | 0 |
 1101 | 1010 | 1 | 0 | 0 | 1 |
 1010 | 1011 | 1 | 0 | 1 | 1 |
 1011 | 1001 | 1 | 0 | 0 | 1 |
 1001 | 0001 | 0 | 0 | 0 | 1 |
 0001 | 0000 | 0 | 0 | 0 | 0 |

 $D_A = AC + CD$ \hspace{1cm} $D_B = C'D' + BD + A'CD$ \hspace{1cm} $D_C = B + A'C + CD'$ \hspace{1cm} $D_D = AB' + B'C + A'CD$

 Unused States
 0101 D_A 1 D_B 1 D_C 1 D_D 0 Next States 0110, correcting
 1000 D_A 0 D_B 1 D_C 0 D_D 1 0101, 1110, correcting
 1100 D_A 0 D_B 1 D_C 0 D_D 1 0110, correcting
 1101 D_A 1 D_B 1 D_C 0 D_D 0 1110, correcting
12. (20 points) Design a Mealy sequential circuit that has one input and one output. This circuit has an output of 1 whenever its input string has the string 0110 in sequence and otherwise has an output of 0. Two sequences can overlap. Use JK flip-flops. You do not have to draw the circuit diagram.

Input: 0110 1101 1101 0111 1110 0011 0111 11

Output: 0001 0010 0000 0000 0000 1000 0000 00

S0: no valid part of the sequence yet
S1: received 0
S2: received 01
S3: received 011

<table>
<thead>
<tr>
<th>Current State</th>
<th>Input</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>S0</td>
<td>0</td>
</tr>
<tr>
<td>S1</td>
<td>0</td>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>S2</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>S3</td>
<td>0</td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>1</td>
<td>S0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Circuit Diagram]