Fixed point filter implementation

CPE 621 Advanced Microcomputer Techniques
Dr. Emil Jovanov
Digital filters

• Processing previous inputs (X[i]) and outputs (Y[i]) to evaluate the value of the current output sample
 – nb input samples and coefficients
 – na previous output samples and coefficients
 – current output is the sum of products of previous samples and coefficients

• Types of filters
 – IIR (Infinite Impulse Response) → general form
 – FIR (Finite Impulse Response) → only input samples X[i]

• Matlab function – filter
 – run Matlab “filtering” demo

FILTER One-dimensional digital filter.
Y = FILTER(B,A,X) filters the data in vector X with the filter described by vectors A and B to create the filtered data Y. The filter is a "Direct Form II Transposed" implementation of the standard difference equation:

\[
\begin{align*}
a(1) y(n) &= b(1)x(n) + b(2)x(n-1) + \ldots + b(nb+1)x(n-nb) \\
&- a(2)y(n-1) - \ldots - a(na+1)y(n-na)
\end{align*}
\]
Matlab filter Design and Analysis

- Matlab tools
 - sptool for preliminary signal processing and analysis
 - Example 3D accelerometer with LP and HP filtering
 - Signal viewer
 - Filter design and testing
 - Spectral analysis
 - fdtool for filter design and export
 - Tools → generate C header file

- Other tools ...
Fixed point filter implementation

• Microcontrollers emulate floating point operations
 – Running fixed point operations much faster
 – The precision may not be sufficient for some applications
 – Example ffilt.c on our web-site

• Representing floating point numbers using fixed point values (arithmetic operations)

• Assume:
 – max(coefficient value) = MAX_INT
 – scale all coefficients to MAX_INT

• Optimize individual terms
Filter implementation - example

- Optimized processing
- Example - low pass IIR filter, coefficients:
 - filter coefficient: 0.009236
 - fixed point coef. value: 65536*()=605.290496 (0x25D)
 - binary value 0b0000 0010 0101 1101 010010
 - Loosing 6-bits of precision!!!
 - Old value: 0b0000001001011101
 - New value: 0b1001011101010010 (dec. 38740)

- Processing
 - temporary result: unsigned long templ;
 - templ += (38740 * x[0]) >> 6;
/***/

file: fix_filt.c
description: Fixed point FIR and IIR filtering routines,
 all procedures manually optimized for maximum precision.
author: Emil Jovanov
date: November 3, 2001. */

// input & output samples
#define FILT_LEN 12
int NB=FILT_LEN; // filter length

/*** FIR filter - fixed point ***/
void xfir_filter(int * x, int * y, int sample) {
 /* fixed point filter procedure, xin - input signal , yout - filtered input signal */
 long templ;
 register int ii;

 /* the latest sample is at index 0, all other are shifted */
 for (ii=NB-1;ii>0;ii--) {
 x[ii]=x[ii-1];
 y[ii] = y[ii-1];
 }
 x[0]=sample;

 /*** B coefficients */
 templ=0;
 templ += (44530 * x[0]) >> 7; /* b(1) -> 0.005308 */
 templ += (47034 * x[1]) >> 5; /* b(2) -> 0.022428 */
 templ += (56963 * x[2]) >> 4; /* b(3) -> 0.055974 */
 templ += (53836 * x[3]) >> 3; /* b(4) -> 0.102684 */
 templ += (39233 * x[4]) >> 2; /* b(5) -> 0.179419 */
 templ += (47034 * x[5]) >> 2; /* b(6) -> 0.179419 */
 templ += (47034 * x[6]) >> 2; /* b(7) -> 0.179419 */
 templ += (39233 * x[7]) >> 2; /* b(8) -> 0.179419 */
 templ += (53836 * x[8]) >> 3; /* b(9) -> 0.206353 */
 templ += (58693 * x[9]) >> 4; /* b(10) -> 0.055974 */
 templ += (47034 * x[10]) >> 5; /* b(11) -> 0.22428 */
 templ += (44530 * x[11]) >> 7; /* b(12) -> 0.005308 */
 y[0]=templ >> 16;
}

/*** IIR filter - fixed point ***/
void xiir_filter(int * x, int * y, int sample) {
 /* fixed point filter procedure */
 long templ;
 register int ii;

 /* the latest sample is at index 0, all other are shifted */
 for (ii=NB-1;ii>0;ii--) {
 x[ii]=x[ii-1];
 y[ii] = y[ii-1];
 }
 x[0]=sample;

 /*** A coefficients */
 temp=0;
 temp += (38740 * x[0]) >> 6; /* b(1) -> 0.009236 */
 temp += (38740 * x[1]) >> 5; /* b(2) -> 0.018472 */
 temp += (38740 * x[2]) >> 5; /* b(3) -> 0.018472 */
 temp += (56044 * y[1]) << 1; /* a(2) -> -1.710329 */
 temp += (49897 * y[2]); /* a(3) -> 0.747274 */

 y[0]=temp >> 16;
}
Filter Coefficients

• **Group scaling of coefficients**
 - Scale factor $1/{\text{max_coeff_value}}$:
 • $1/1.710329 = 0.58 \ (1/2)$
 - Coeff_shift = $0.5*65536$

• **Individual scaling of coefficients**
 - Scale factor $1/{\text{coeff_value}}$:
 • $1/0.005308 = 188$
 - Coeff_shift = the largest power of two $\rightarrow 128 \ (2^{^7})$
 • Coefficient value: $\text{round}(128*65536*0.005308) = 44,527$

• **Temporary result:**
 - $\text{templ} += (\text{sample} \times \text{coeff}) >> \text{coeff_shift}$