Portable Telemedical Monitoring
Using Wireless Sensors
on the Edge of the Internet

Emil Jovanov

University of Alabama in Huntsville
Electrical and Computer Engineering Dept.
Huntsville, AL 35899

email: jovanov@ece.uah.edu

Intelligent monitors

• Sudden collapse victims, result of
 ● circulatory
 ● hypoxemic
 ● traumatic arrest
• estimated mortality 350,000 lives/year
• economic cost of trauma related injuries
 $400 billion / year (NIH PA-01-054)
Intelligent Personal Monitors

Can we make it without wires?

- Wireless infrastructure
 - 700 million subscriber units by 2002
- Mobile computing
 - system on chip
- Intelligent wireless sensors
- Intelligent health monitors / warning devices
- Personal Area Network (PAN)
 - body network / intelligent clothes
 - wireless personal area network
 - hierarchical processing
Solution?

Wireless Personal Area Network of Intelligent Sensors

+ Hierarchical Digital Signal Processing

Problems of existing systems?

• Development environment
 ● custom VLSI, assembler?
• Resources for sophisticated real-time processing
 ● memory
 ● speed
• Price
Wireless Personal Area Network

- Wireless network of intelligent sensors
- Wireless Intelligent Sensor (WISE)
- Piconetwork
- Sensors
 - EEG
 - ECG
 - breathing
 - movement

Wireless Intelligent Sensor WISE

- Low power microcontroller TI430F149
 - 16-bit RISC architecture, 60KB flash, 2KB RAM
 - ultra-low power consumption (400 µA in active mode, as low as 0.8 µA in standby mode)
 - 8 channels (12+2 bit A/D)

- Wireless transceiver
 - LINX RF transceiver 916MHz
 - 33.6 Kbps data transfer rate
 - adjustable power/range

- Biomedical amplifier
 - Teledyne TETMD A110 (ECG/EEG amplifier)
 - custom amplifiers
WISE Architecture

WISE Ver. 1.2
Hierarchical Signal Processing

<table>
<thead>
<tr>
<th></th>
<th>Internet</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>500 MIPS</td>
<td>100's W</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>100 MIPS</td>
<td>100's mW</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>10 MIPS</td>
<td>10's mW</td>
</tr>
</tbody>
</table>

Wireless PAN configuration
Hierarchical DSP System Design

- Constraint programming
 - set of constraints
- Process scheduling
- Performance evaluation
- Energy profiling
- Iterative process

Process scheduling issues

- System parameters
 - execution time
 - energy per process
 - communication
- Constraint based scheduling
System Implementation

Hierarchical process scheduling

I Workstation

II DSP

III μC
Environment for dynamic energy profiling

DSP Application Profiling Example

![Diagram showing a graph with labels for CF Active, CF Read, and CPU Active]
Exploring the design space

Examples

• ECG analysis (ischemic event monitor)
• Activity monitor
• Breathing monitor
• Civil Disaster Data Acquisition Device
ECG Analysis

• Sophisticated analysis in
 • High performance/low power DSP
• Warnings (sometimes life saving)
• Typical ECG processing algorithms
 • Initialization (thresholds, polarity, gain control)
 • Filtering (band pass filters, notch filters)
 • QRS complex detection
 • Heart rate variability processing
 • Baseline correction
• Robust algorithms
Hierarchical processing issues

- Data mining on higher levels
- Adaptive thresholds
- Multi-sensor synergy
 - running/sitting?
- Environmental effects
User activity monitoring

Accelerometer based Wireless Intelligent Sensor
- Analog Devices ADXL 202/210 MEMS
- Digital front-end of WISE
Alternative processing methods

Breathing sensor
Breathing sensor

- Custom analog front end
- Thermistor based differential breathing sensor

Circadian breathing rhythm analysis

- Wireless link
- When_available archiving
- Hierarchical processing
ECG system setup and monitoring

- System setup & debugging
- Visual Basic application on portable computer
- WISE Gateway with serial link interface

Wearable physiological monitors

- ECG (heart activity)
 - myocardial ischemia
 - arrhythmia
 - circadian rhythm analysis of heart rate variability
- EEG (brain activity)
 - epileptic seizure detection
 - drowsiness detection
- Heterogenous sensors (polygraphy)
 - sleep apnea monitoring
 - physical therapy feedback for stroke victims
 - new generation human-computer interfaces
Wireless PAN - Applications

• Wearable physiological monitors
 ● intelligent monitoring/early warnings
 ● decrease hospitalizations & nursing visits
• Intelligent control of medication
 ● sensing, dosing and compliance monitoring
• Aids for disabled
• Computer assisted rehabilitation
 ● stroke victims
 ● supervised heart attack rehabilitation
• Battlefield soldier monitoring
• Advanced human-computer interfaces

Conclusion

• Enabling technology for a new generation of telemedical systems and intelligent sensors
• Sensor technology
 ● Implantable sensors as natural extension
 ● glucose blood monitors, drug pumps
• Optimum drug administration
• Prolonged monitoring
• Portable “guardian angel”
• Research issues
 ● resource allocation
 ● constraint solving
 ● power optimal system organization
Acknowledgments

DSP Challenge
- Dejan Raskovic
- John Price
- John Chapman
- Anthony Moore
- Abhishek Krishnamurthy

Student projects
- Lou Woods
- Daniel Pritchett
- Sergey Dergunov
- Dejan Milutinovic

Collaborators
- Dr. Krishna Kavi
- Dr. Tom Martin