Introduction to Data Communication Networks
EE 424/504 Spring 2010

Class Info: Meeting time: 12:45-2:05 Tuesday and Thursday
Location: Engineering Building 135

Instructor: Laurie Joiner
Email: ljoiner@eng.uah.edu
Office: EB 217-B
Phone: 824-6126

Office Hours: Tuesday and Thursday 10:00-11:00, Wednesday 2:00-3:00

Prerequisites: EE 383 Analytical Methods for Multivariable and Discrete Time Systems or
CPE 381 Fundamental Signals and Systems for Computer Engineers

Required Text: B.P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4ed,

References: B. Sklar, Digital Communications, 2ed. Prentice Hall, 2001
R. Ziemer and R. Peterson, Introduction to Digital Communication, 2ed, Prentice Hall,
H. Stern and S. Mahmoud, Communication Systems Analysis and Design, Prentice Hall,
2004.

Objectives: By the end of the semester you should be able to:
• Define and describe various digital modulation techniques
• Design optimal receivers and develop error performance equations for FSK, PSK,
 and QAM
• Define and describe pulse code modulation
• Define multiplexing and understand its use in the T1 digital carrier system
• Describe the operation and basic functions of a standard telephone set.
• Describe the transmission characteristics of a local subscriber loop
• Describe the basic operation of a cellular telephone system
• Describe the error-correction mechanisms of FEC, ARQ, and Hamming codes

Topics covered: Introduction
 Digital communication system
 Frequency domain analysis
 Bandwidth
 Autocorrelation
 Analog-to-Digital Conversion
 Sampling and Quantization
 PCM
 Multiplexing
 Digital Data Transmission
 Line coding
 Pulse shaping
 Modulation techniques
 Introduction to Probability Theory
 Performance of Digital Communication Systems
 Spread spectrum communications
 Direct sequence
 Frequency hop
 Digital T-Carriers and Multiplexing
 Time-division multiplexing
 T1 digital carrier
 Frequency-division multiplexing
 Public Telephone Network
Local subscriber loop
Transmission impairments
Cellular Telephone Concepts
Cells and frequency reuse
PCS, N-AMPS, GSM
Error Control and Error Correction

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Two in-class tests</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

Final average of:
- 90 – 100 A
- 80-89 B
- 70-79 C
- 60-69 D
- < 60 F

Graduate level: You will be asked to write a short report on a subject related to data communications. You will present your report to the class in a conference style format (approximately 20 minute presentation). You will be graded on your report and presentation. This will be 25% of your homework grade.

Academic Honesty: All work submitted for the tests and final must be your own unaided work. Collaboration on homework and laboratories is permitted, but solutions must be your own. Anything in the written project not in your own words must be properly quoted and cited.

Web Site: A web site for this course will be maintained at http://www.ece.uah.edu/~ljoiner/ee424. Any course handouts and all homework assignments will be posted to this page.

Final Exam: The final exam is on Thursday, April 29 from 11:30 am-2:00 pm.