Review: CMOS Circuit Styles

- **Static complementary CMOS** - except during switching, output connected to either VDD or GND via a low-resistance path
 - high noise margins
 - full rail to rail swing
 - VOH and VOL are at VDD and GND, respectively
- low output impedance, high input impedance
- no steady state path between VDD and GND (no static power consumption)
- delay a function of load capacitance and transistor resistance
- comparable rise and fall times (under the appropriate transistor sizing conditions)

- **Dynamic CMOS** - relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes
 - simpler, faster gates
 - increased sensitivity to noise
Review: Static Complementary CMOS

Pull-up network (PUN) and pull-down network (PDN)

PMOS transistors only

pull-up: make a connection from V_{DD} to F when $F(In_1, In_2, \ldots, In_N) = 1$

NMOS transistors only

pull-down: make a connection from F to GND when $F(In_1, In_2, \ldots, In_N) = 0$

PUN and PDN are dual logic networks

AOI221

Pull-up network (PUN) and pull-down network (PDN)

PMOS transistors only

pull-up: make a connection from V_{DD} to F when $F(In_1, In_2, \ldots, In_N) = 1$

NMOS transistors only

pull-down: make a connection from F to GND when $F(In_1, In_2, \ldots, In_N) = 0$

PUN and PDN are dual logic networks

AOI221
What logic function is this?

OAI21 Logic Graph

\[
X = \overline{C \cdot (A + B)}
\]
Two Stick Layouts of \(!(C \cdot (A + B)) \)

![Diagram showing two stick layouts of \(!(C \cdot (A + B)) \)](image-url)

An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph:

- Euler path: a path through all nodes in the graph such that each edge is visited once and only once.

Consistent Euler Path

- An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph.
- For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be **consistent** (the same).
Consistent Euler Path

- An uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph
 - Euler path: a path through all nodes in the graph such that each edge is visited once and only once.

- For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be **consistent** (the same)

OAI22 Logic Graph

- \[X = \neg ((A+B) \cdot (C+D)) \]
Some functions have no consistent Euler path like $x = !(a + bc + de)$ (but $x = !(bc + a + de)$ does!)

Combinational Logic Cells (cont’d)

- The AOI family of cells with 3 index numbers or less
 - $X = \{AOI, OAI, AO, OA\}; a,b,c=\{2,3\}$

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Cells</th>
<th>Number of Unique Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Xa1$</td>
<td>$X21, X31$</td>
<td>2</td>
</tr>
<tr>
<td>$Xa11$</td>
<td>$X211, X311$</td>
<td>2</td>
</tr>
<tr>
<td>Xab</td>
<td>$X22, X33, X32$</td>
<td>3</td>
</tr>
<tr>
<td>$Xab1$</td>
<td>$X221, X321, X331$</td>
<td>3</td>
</tr>
<tr>
<td>$Xabc$</td>
<td>$X222, X333, X332, X322$</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
VTC is Data-Dependent

- The threshold voltage of M_2 is higher than M_1 due to the body effect (γ)

\[
V_{Tn1} = V_{Tn0} \\
V_{Tn2} = V_{Tn0} + \gamma(\sqrt{2\phi_F} + V_{int}) - \sqrt{2\phi_F}
\]

since V_{SB} of M_2 is not zero (when $V_B = 0$) due to the presence of C_{int}

Static CMOS Full Adder Circuit

Static CMOS Full Adder Circuit

\[
\begin{align*}
!C_{out} &= !C_{in} \land (A \lor !B) \lor (A \land !B) \\
!Sum &= C_{out} \land (A \lor !B \lor !C_{in}) \lor (A \land !B \land !C_{in}) \\
C_{out} &= C_{in} \land (A \lor B) \lor (A \land B) \\
Sum &= !C_{out} \land (A \lor B \lor C_{in}) \lor (A \land B \land C_{in})
\end{align*}
\]

Pass Transistor Logic
NMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- NMOS switch closes when the gate input is high

\[
\begin{align*}
X = Y & \text{ if } A \text{ and } B \\
X = Y & \text{ if } A \text{ or } B
\end{align*}
\]

- Remember –
 NMOS transistors pass a strong 0 but a weak 1

PMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- PMOS switch closes when the gate input is low

\[
\begin{align*}
X = Y & \text{ if } \overline{A} \text{ and } \overline{B} = A + B \\
X = Y & \text{ if } \overline{A} \text{ or } \overline{B} = A \cdot B
\end{align*}
\]

- Remember –
 PMOS transistors pass a strong 1 but a weak 0
Pass Transistor (PT) Logic

- Gate is static – a low-impedance path exists to both supply rails under all circumstances
- N transistors instead of 2N
- No static power consumption
- Ratioless
- Bidirectional (versus undirectional)

VTC of PT AND Gate

Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)
Differential PT Logic (CPL)

![CPL Diagram]

CPL Properties

- **Differential** so complementary data inputs and outputs are always available (so don’t need extra inverters)
- Still static, since the output defining nodes are always tied to V_{DD} or GND through a low resistance path
- Design is **modular**; all gates use the same topology, only the inputs are permuted.
- Simple XOR makes it attractive for structures like **adders**
- Fast (assuming number of transistors in series is small)
- Additional routing overhead for complementary signals
- Still have static power dissipation problems
NMOS Only PT Driving an Inverter

- V_x does not pull up to V_{DD}, but $V_{DD} - V_{Th}$
- Threshold voltage drop causes static power consumption (M_2 may be weakly conducting forming a path from V_{DD} to GND)
- Notice V_{Th} increases of pass transistor due to body effect (V_{SB})

Voltage Swing of PT Driving an Inverter

- Body effect – large V_{SB} at x - when pulling high (B is tied to GND and S charged up close to V_{DD})
- So the voltage drop is even worse
 \[V_x = V_{DD} - (V_{Th}0 + \gamma(\sqrt{2\phi_I} + V_x) - \sqrt{2\phi_I}) \]
Cascaded NMOS Only PTs

Swing on \(y = V_{DD} - V_{Tn1} - V_{Tn2} \)

- Pass transistor gates should **never** be cascaded as on the left
- Logic on the right suffers from static power dissipation and reduced noise margins

Solution 1: Level Restorer

- Full swing on \(x \) (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT since Restorer is only active when \(A \) is high
- For correct operation \(M_r \) must be sized correctly (ratioed)
Transistor Level Restorer Circuit Response

- Restorer has speed and power impacts: increases the capacitance at x, slowing down the gate; increases t\textsubscript{l} (but decreases t\textsubscript{f})

Solution 2: Multiple V\textsubscript{T} Transistors

- Technology solution: Use (near) zero V\textsubscript{T} devices for the NMOS PTs to eliminate most of the threshold drop (body effect still in force preventing full swing to V\textsubscript{DD})

- Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V\textsubscript{GS} is below V\textsubscript{T})
Solution 3: Transmission Gates (TGs)

- Most widely used solution

- Full swing bidirectional switch controlled by the gate signal C, $A = B$ if $C = 1$
Resistance of TG

\[
\text{Resistance, } \Omega \quad \begin{array}{c}
0 & 5 & 10 & 15 & 20 & 25 & 30 \\
V_{\text{out}}, \text{V}
\end{array}
\]

\[
R_p \quad R_n \quad R_{eq}
\]

TG Multiplexer

\[F = !((In_1 \cdot S + In_2 \cdot \overline{S}))\]
Transmission Gate XOR

A ⊕ B

Transmission Gate XOR

weak 0 if !A
weak 1 if A

A • !B
B • !A

an inverter
TG Full Adder

Differential TG Logic (DPL)