CPE/EE 427, CPE 527
VLSI Design I
L13: Wires, Design for Speed

Department of Electrical and Computer Engineering
University of Alabama in Huntsville

Aleksandar Milenkovic (www.ece.uah.edu/~milenka)
www.ece.uah.edu/~milenka/cpe527-05F

Course Administration

• Instructor: Aleksandar Milenkovic
milenka@ece.uah.edu
www.ece.uah.edu/~milenka
EB 217-L
Mon. 5:30 PM – 6:30 PM,
Wen. 12:30 – 13:30 PM
• URL:
http://www.ece.uah.edu/~milenka/cpe527-05F
• TA: Joel Wilder
• Labs:
Lab#4: due 10/14/05; Lab#5: 10/21/05
• Hws: Solutions in secure directory /scr (cpe427fall05, ?)
• Project:
Proposals due was on 10/10/05
• Test I:
10/17/05
• Text:
CMOS VLSI Design, 3rd ed., Weste, Harris
• Review:
Chapters 1, 2, 3, 4;
• Today:
Wires, Design for Speed (meet AM in the Lab tonight)
Outline

- Introduction
- Wire Resistance
- Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters

Introduction

- Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally
Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR ≪ 1
 - Modern processes have AR ≈ 2
 - Pack in many skinny wires

Layer Stack

- AMI 0.6 µm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- Example:
 - Intel 180 nm process
 - M1: thin, narrow (< 3λ)
 - High density cells
 - M2-M4: thicker
 - For longer wires
 - M5-M6: thickest
 - For V_{DD}, GND, clk

<table>
<thead>
<tr>
<th>Layer</th>
<th>T (nm)</th>
<th>W (nm)</th>
<th>S (nm)</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1720</td>
<td>860</td>
<td>860</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1800</td>
<td>800</td>
<td>800</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1080</td>
<td>540</td>
<td>540</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>320</td>
<td>320</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>320</td>
<td>320</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>480</td>
<td>250</td>
<td>250</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wire Resistance

- \(\rho \) = resistivity \((\Omega \cdot \text{m})\)

\[
R = \frac{\rho l}{t w} = R_{\square} \frac{l}{w}
\]

- \(R_{\square} \) = sheet resistance \((\Omega / \square)\)
 - \(\square \) is a dimensionless unit (!)

- Count number of squares
 - \(R = R_{\square} \times \) (# of squares)

Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bulk resistivity ((\mu \Omega \cdot \text{cm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.8</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.3</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Sheet Resistance

• Typical sheet resistances in 180 nm process

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sheet Resistance (Ω/□)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion (silicided)</td>
<td>3-10</td>
</tr>
<tr>
<td>Diffusion (no silicide)</td>
<td>50-200</td>
</tr>
<tr>
<td>Polysilicon (silicided)</td>
<td>3-10</td>
</tr>
<tr>
<td>Polysilicon (no silicide)</td>
<td>50-400</td>
</tr>
<tr>
<td>Metal1</td>
<td>0.08</td>
</tr>
<tr>
<td>Metal2</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal3</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal4</td>
<td>0.03</td>
</tr>
<tr>
<td>Metal5</td>
<td>0.02</td>
</tr>
<tr>
<td>Metal6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Contacts Resistance

• Contacts and vias also have 2-20 Ω
• Use many contacts for lower R
 – Many small contacts for current crowding around periphery
Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- \(C_{\text{total}} = C_{\text{top}} + C_{\text{bot}} + 2C_{\text{adj}} \)

Capacitance Trends

- Parallel plate equation: \(C = \varepsilon A/d \)
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - \(\varepsilon = k\varepsilon_0 \)
 - \(\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm} \)
 - \(k = 3.9 \) for SiO\(_2\)
- Processes are starting to use low-k dielectrics
 - \(k \approx 3 \) (or less) as dielectrics use air pockets
M2 Capacitance Data

- Typical wires have ~ 0.2 fF/µm
 - Compare to 2 fF/µm for gate capacitance

![M2 Capacitance Data Graph]

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/µm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates
Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

![Diagram of lumped element models](image)

- 3-segment π-model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π-model for Elmore delay

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 µm wide
- Construct a 3-segment π-model
 - $R_{\square} =$
 - $C_{\text{permicron}} =$
Example

• Metal2 wire in 180 nm process
 – 5 mm long
 – 0.32 \(\mu \)m wide
• Construct a 3-segment \(\pi \)-model
 – \(R_{\square} = 0.05 \, \Omega/\square \) \(\Rightarrow R = 781 \, \Omega \)
 – \(C_{\text{permicron}} = 0.2 \, fF/\mu m \) \(\Rightarrow C = 1 \, \text{pF} \)

\[\begin{array}{ccc}
260 \, \Omega & & 260 \, \Omega \\
\downarrow & | & \downarrow \\
167 \, fF & | & 167 \, fF \\
\downarrow & & \downarrow \\
260 \, \Omega & & 260 \, \Omega \\
\end{array} \]

Wire RC Delay

• Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 – \(R = 2.5 \, k\Omega \times \mu m \) for gates
 – Unit inverter: 0.36 \(\mu m \) nMOS, 0.72 \(\mu m \) pMOS

\[t_{pd} = \]
Wire RC Delay

• Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 – $R = 2.5 \, \text{k}\Omega \cdot \mu\text{m}$ for gates
 – Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

\[\begin{align*}
\text{Driver} & \quad 781 \, \Omega \\
\text{Wire} & \quad 690 \, \Omega \quad 500 \, \text{fF} \quad 500 \, \text{fF} \\
\text{Load} & \quad 4 \, \text{fF}
\end{align*} \]

– $t_{pd} = 1.1 \, \text{ns}$

Simulated Wire Delays

\[\begin{align*}
&V_{in} \quad \overline{L/10} \quad L/4 \quad L/2 \quad L \\
&V_{out}
\end{align*} \]

\[\begin{align*}
\text{Voltage (V)} & \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \\
\text{Time (nsec)} & \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \quad 4 \quad 4.5 \quad 5
\end{align*} \]
Wire Delay Models

- Ideal wire
 - same voltage is present at every segment of the wire at every point in time - at equi-potential
 - only holds for very short wires, i.e., interconnects between very nearest neighbor gates
- Lumped C model
 - when only a single parasitic component (C, R, or L) is dominant the different fractions are lumped into a single circuit element
 - When the resistive component is small and the switching frequency is low to medium, we can consider only C; the wire itself does not introduce any delay; the only impact on performance comes from wire capacitance
 - good for short wires; pessimistic and inaccurate for long wires

Wire Delay Models, con’t

- Lumped RC model
 - total wire resistance is lumped into a single R and total capacitance into a single C
 - good for short wires; pessimistic and inaccurate for long wires
- Distributed RC model
 - circuit parasitics are distributed along the length, L, of the wire
 - c and r are the capacitance and resistance per unit length
 - Delay is determined using the Elmore delay equation
 \[\tau_{Di} = \sum_{k=1}^{N} C_k r_{ik} \]
Chain Network Elmore Delay

Elmore delay equation

\[\tau_{DN} = \sum c_i r_{ij} = \sum c_i \sum r_j \]

\[\tau_{D1} = c_1 r_1 \]
\[\tau_{D2} = c_1 r_1 + c_2 (r_1 + r_2) \]
\[\tau_{Di} = c_1 r_{eq} + 2c_2 r_{eq} + 3c_3 r_{eq} + \ldots + ic_i r_{eq} \]
Distributed RC Model for Simple Wires

• A length L RC wire can be modeled by N segments of length L/N
 – The resistance and capacitance of each segment are given by \(r \frac{L}{N} \) and \(c \frac{L}{N} \)

\[
\tau_{DN} = \left(\frac{L}{N}\right)^2 (cr + 2cr + \ldots + Ncr) = (crL^2) \frac{N(N+1)}{2N^2} = CR\frac{(N+1)}{2N})
\]

where \(R (= rL) \) and \(C (= cL) \) are the total lumped resistance and capacitance of the wire

• For large \(N \)

\[
\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}
\]

• Delay of a wire is a quadratic function of its length, \(L \)
• The delay is \(1/2 \) of that predicted (by the lumped model)

Putting It All Together

- Total propagation delay consider driver and wire

\[
\tau_D = R_{\text{Driver}} C_w + \frac{(R_w C_w)}{2} = R_{\text{Driver}} C_w + 0.5 r_w c_w L^2
\]

and \(t_p = 0.69 R_{\text{Driver}} C_w + 0.38 R_w C_w \)

where \(R_w = r_w L \) and \(C_w = c_w L \)

- The delay introduced by wire resistance becomes dominant when \((R_w C_w)/2 \geq R_{\text{Driver}} C_w \) (when \(L \geq 2 R_{\text{Driver}}/R_w \))
 – For an \(R_{\text{Driver}} = 1 \, \text{kΩ} \) driving an 1 \(\mu \text{m} \) wide Al1 wire, \(L_{\text{crit}} \) is 2.67 cm
Design Rules of Thumb

• RC delays should be considered when \(t_{pRC} > t_{pgate} \) of the driving gate

\[
L_{crit} > \sqrt{\left(\frac{t_{pgate}}{0.38rc} \right)}
\]

– actual \(L_{crit} \) depends upon the size of the driving gate and the interconnect material

• RC delays should be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

\[t_{rise} < RC \]

– when not met, the change in the signal is slower than the propagation delay of the wire so a lumped C model suffices

Delay with Long Interconnects

• When gates are farther apart, wire capacitance and resistance can no longer be ignored.

\[
t_p = 0.69R_{dr}C_{int} + (0.69R_{dr} + 0.38R_w)C_w + 0.69(R_{dr} + R_w)C_{fan}
\]

where \(R_{dr} = (R_{eqn} + R_{eqp})/2 \)

\[
= 0.69R_{dr}(C_{int} + C_{fan}) + 0.69(R_{dr}C_w + r_wC_{fan})L + 0.38r_wC_wL^2
\]

• Wire delay rapidly becomes the dominate factor (due to the quadratic term) in the delay budget for longer wires.
Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1→0 or 0→1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as Cgnd = Ctop + Cbot
- Effective Cadj depends on behavior of neighbors
 - Miller effect

<table>
<thead>
<tr>
<th>B</th>
<th>ΔV</th>
<th>$C_{eff(A)}$</th>
<th>MCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching with A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching opposite A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as C_{gnd} = C_{top} + C_{bot}
- Effective C_{adj} depends on behavior of neighbors
 - Miller effect

\[
\begin{array}{|c|c|c|}
\hline
B & \Delta V & C_{\text{eff}(A)} & MCF \\
\hline
\text{Constant} & V_{\text{DD}} & C_{\text{gnd}} + C_{\text{adj}} & 1 \\
\text{Switching with A} & 0 & C_{\text{gnd}} & 0 \\
\text{Switching opposite A} & 2V_{\text{DD}} & C_{\text{gnd}} + 2C_{\text{adj}} & 2 \\
\hline
\end{array}
\]

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

\[
\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \Delta V_{\text{aggressor}}
\]

\[
\begin{array}{c}
\Delta V_{\text{aggressor}} \\
\hline
\text{Aggressor} \\
\hline
\Delta V_{\text{victim}} \\
\text{Victim} \\
\hline
C_{\text{adj}} \\
C_{\text{gnd-v}} \\
\hline
\end{array}
\]
Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{\text{aggressor}} = 2-4 \times R_{\text{victim}}$

$$
\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \frac{1}{1+k} \Delta V_{\text{aggressor}}
$$

$$
k = \frac{\tau_{\text{aggressor}}}{\tau_{\text{victim}}} = \frac{R_{\text{aggressor}}}{R_{\text{victim}}} \frac{C_{\text{gnd-a}} + C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}}
$$

Coupling Waveforms

- Simulated coupling for $C_{\text{adj}} = C_{\text{victim}}$
Noise Implications

- *So what* if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing
 - Layer

[Graphs showing delay and coupling vs. pitch and spacing]
Wire Engineering

• Goal: achieve delay, area, power goals with acceptable noise
• Degrees of freedom:
 – Width
 – Spacing
 – Layer
 – Shielding

Repeaters

• R and C are proportional to l
• RC delay is proportional to l^2
 – Unacceptably great for long wires
Repeater Design

• How many repeaters should we use?
• How large should each one be?
• Equivalent Circuit
 – Wire length \(l/N \)
 • Wire Capacitance \(C_w^{*}l/N \), Resistance \(R_w^{*}l/N \)
 – Inverter width \(W \) (nMOS = \(W \), pMOS = \(2W \))
 • Gate Capacitance \(C^{*}W \), Resistance \(R/W \)
Repeater Design

• How many repeaters should we use?
• How large should each one be?
• Equivalent Circuit
 – Wire length l
 • Wire Capacitance $C_w l$, Resistance $R_w l$
 – Inverter width W (nMOS = W, pMOS = 2W)
 • Gate Capacitance C'_W, Resistance R/W

\[
\frac{R_w}{N} \quad \frac{R/W}{C_w/2N} \quad \frac{R/W}{C_w/2N} \quad C'_W
\]

Repeater Results

• Write equation for Elmore Delay
 – Differentiate with respect to W and N
 – Set equal to 0, solve

\[
\frac{l}{N} = \sqrt{\frac{2RC'}{R_wC_w}}
\]

\[
\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right) \sqrt{\frac{RC'W}{R'_wC_w}} \quad \text{~60-80 ps/mm in 180 nm process}
\]

\[
W = \sqrt{\frac{RC_w}{R'_wC'}}
\]
Designing for Speed

Department of Electrical and Computer Engineering
University of Alabama in Huntsville

Review: CMOS Inverter: Dynamic

\[t_{pHL} = f(R_n, C_L) \]
\[t_{pHL} = 0.69 \, R_{eqn} \, C_L \]
\[t_{pHL} = 0.69 \left(\frac{3}{4} \left(C_L \, V_{DD} / I_{DSATn} \right) \right) \]
\[= 0.52 \, C_L \, / \left(W/L_n \, k'_n \, V_{DSATn} \right) \]
Review: Designing Inverters for Performance

- Reduce C_L
 - internal diffusion capacitance of the gate itself
 - interconnect capacitance
 - fanout
- Increase W/L ratio of the transistor
 - the most powerful and effective performance optimization tool in the hands of the designer
 - watch out for self-loading!
- Increase V_{DD}
 - only minimal improvement in performance at the cost of increased energy dissipation
- Slope engineering - keeping signal rise and fall times smaller than or equal to the gate propagation delays and of approximately equal values
 - good for performance
 - good for power consumption

Switch Delay Model
Input Pattern Effects on Delay

- Delay is dependent on the pattern of inputs
- Low to high transition
 - both inputs go low
 - delay is $0.69 \frac{R_p}{2} C_L$ since two p-resistors are on in parallel
 - one input goes low
 - delay is $0.69 R_p C_L$
- High to low transition
 - both inputs go high
 - delay is $0.69 2R_n C_L$
- Adding transistors in series (without sizing) slows down the circuit

Delay Dependence on Input Patterns

2-input NAND with
NMOS = 0.5\,\mu m/0.25 \,\mu m
PMOS = 0.75\,\mu m/0.25 \,\mu m
$C_L = 10 \,\text{fF}$

<table>
<thead>
<tr>
<th>Input Data Pattern</th>
<th>Delay (psec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=B=0→1</td>
<td>69</td>
</tr>
<tr>
<td>A=1, B=0→1</td>
<td>62</td>
</tr>
<tr>
<td>A= 0→1, B=1</td>
<td>50</td>
</tr>
<tr>
<td>A=B=1→0</td>
<td>35</td>
</tr>
<tr>
<td>A=1, B=1→0</td>
<td>76</td>
</tr>
<tr>
<td>A= 1→0, B=1</td>
<td>57</td>
</tr>
</tbody>
</table>
Transistor Sizing

Fan-In Considerations

\[t_{pHL} = 0.69 \, R_{eqn} (C_1 + 2C_2 + 3C_3 + 4C_L) \]

Propagation delay deteriorates rapidly as a function of fan-in – quadratically in the worst case.
Fast Complex Gates: Design Technique 1

- Transistor sizing
 - as long as fan-out capacitance dominates

- Progressive sizing
 - Distributed RC line
 - \(\text{M1} > \text{M2} > \text{M3} > \ldots > \text{MN} \)
 - The fet closest to the output should be the smallest.
 - Can reduce delay by more than 20%; decreasing gains as technology shrinks
Fast Complex Gates: Design Technique 2

• Input re-ordering
 – when not all inputs arrive at the same time

 \[
 \begin{align*}
 &\text{critical path} \\
 &\text{charged} \\
 &\text{charged} \\
 &\text{charged} \\
 &\text{discharged} \\
 &\text{discharged}
 \end{align*}
 \]

 delay determined by time to discharge \(C_L, C_1 \) and \(C_2 \)

 delay determined by time to discharge \(C_L \)
Sizing and Ordering Effects

Progressive sizing in pull-down chain gives up to a 23% improvement.

Input ordering saves 5%
- critical path A – 23%
- critical path D – 17%

Fast Complex Gates: Design Technique 3

- Alternative logic structures

\[F = ABCDEFGH \]
Fast Complex Gates: Design Technique 4

- Isolating fan-in from fan-out using buffer insertion

- Real lesson is that optimizing the propagation delay of a gate in isolation is misguided.

Logical Effort: Design Technique 5

- Logical effort generalizes to multistage networks

- Path Logical Effort
 \[G = \prod g_i \]

- Path Electrical Effort
 \[H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}} \]

- Path Effort
 \[F = \prod f_i = \prod g_i h_i \]
Branching Effort

- Introduce *branching effort*
 - Accounts for branching between stages in path

\[
b = \frac{C_{on\ path} + C_{off\ path}}{C_{on\ path}}
\]

\[
B = \prod h_i
\]

- Now we compute the path effort
 - \(F = GBH \)

Note:
\[
\prod h_i = BH
\]

Multistage Delays

- Path Effort Delay
 \(D_F = \sum f_i \)

- Path Parasitic Delay
 \(P = \sum p_i \)

- Path Delay
 \(D = \sum d_i = D_F + P \)
Designing Fast Circuits

\[D = \sum d_i = D_F + P \]

- Delay is smallest when each stage bears same effort

\[\hat{f} = g_i h_i = F^{\frac{1}{N}} \]

- Thus minimum delay of N stage path is

\[D = NF^{\frac{1}{N}} + P \]

- This is a **key** result of logical effort
 - Find fastest possible delay
 - Doesn’t require calculating gate sizes

Gate Sizes

- How wide should the gates be for least delay?

\[\hat{f} = gh = g \frac{C_{out}}{C_{in}} \]

\[\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}} \]

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.
Best Number of Stages

• How many stages should a path use?
 – Minimizing number of stages is not always fastest
• Example: drive 64-bit datapath with unit inverter

\[
D = \frac{N}{f} + P = \frac{N}{64} + N
\]
Derivation

- Consider adding inverters to end of path
 - How many give least delay?

\[
D = NF^{1/2} + \sum_{i=1}^{n_1} p_i + (N - n_1)p_{inv}
\]

\[
\frac{\partial D}{\partial N} = -F^{1/2} \ln F^{1/2} + F^{1/2} + p_{inv} = 0
\]

- Define best stage effort \(\rho = F^{1/2} \)

\[
p_{inv} + \rho (1 - \ln \rho) = 0
\]

Best Stage Effort

- has no closed-form solution

- Neglecting parasitics \((p_{inv} = 0) \), we find \(\rho = 2.718 \) (e)

- For \(p_{inv} = 1 \), solve numerically for \(\rho = 3.59 \)
Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4 < \rho < 6$ gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$