Review: Why Power Matters

- Packaging costs
- Power supply rail design
- Chip and system cooling costs
- Noise immunity and system reliability
- Battery life (in portable systems)
- Environmental concerns
 - Office equipment accounted for 5% of total US commercial energy usage in 1993
 - Energy Star compliant systems
Review: CMOS Energy & Power Equations

\[E = C_L V_{DD}^2 P_{0\rightarrow1} + t_{sc} V_{DD} I_{\text{peak}} P_{0\rightarrow1} + V_{DD} I_{\text{leakage}} \]

\[P = C_L V_{DD}^2 f_{0\rightarrow1} + t_{sc} V_{DD} I_{\text{peak}} f_{0\rightarrow1} + V_{DD} I_{\text{leakage}} \]

Dynamic power Short-circuit power Leakage power

Dynamic Power Consumption

Energy/transition = \[C_L * V_{DD}^2 * P_{0\rightarrow1} \]

\[P_{\text{dyn}} = \text{Energy/transition} * f = C_L * V_{DD}^2 * P_{0\rightarrow1}*f \]

\[P_{\text{dyn}} = C_{\text{EFF}} * V_{DD}^2 * f \quad \text{where} \quad C_{\text{EFF}} = P_{0\rightarrow1} C_L \]

Not a function of transistor sizes!
Data dependent - a function of switching activity!
Lowering Dynamic Power

\[P_{\text{dyn}} = C_L V_{\text{DD}}^2 P_{0 \rightarrow 1} f \]

- Capacitance: Function of fan-out, wire length, transistor sizes
- Supply Voltage: Has been dropping with successive generations
- Activity factor: How often, on average, do wires switch?
- Clock frequency: Increasing...

Short Circuit Power Consumption

Finite slope of the input signal causes a direct current path between \(V_{\text{DD}} \) and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.
Short Circuit Currents Determinates

\[E_{sc} = t_{sc} \cdot V_{DD} \cdot I_{peak} \cdot P_{0 \rightarrow 1} \]

\[P_{sc} = t_{sc} \cdot V_{DD} \cdot I_{peak} \cdot f_{0 \rightarrow 1} \]

- Duration and slope of the input signal, \(t_{sc} \)
- \(I_{peak} \) determined by
 - the saturation current of the P and N transistors which depend on their sizes, process technology, temperature, etc.
 - strong function of the ratio between input and output slopes
 - a function of \(C_L \)

Impact of \(C_L \) on \(P_{sc} \)

Large capacitive load
Output fall time significantly larger than input rise time.

Small capacitive load
Output fall time substantially smaller than the input rise time.
I_{peak} as a Function of C_L

When load capacitance is small, I_{peak} is large.

Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.

500 psec input slope

P_{sc} as a Function of Rise/Fall Times

When load capacitance is small (t_{sin}/t_{sout} > 2 for V_{DD} > 2V) the power is dominated by P_{sc}

If V_{DD} < V_{Tn} + |V_{Tp}| then P_{sc} is eliminated since both devices are never on at the same time.

V_{DD} = 3.3 V
V_{DD} = 2.5 V
V_{DD} = 1.5 V

W/L_p = 1.125 \mu m/0.25 \mu m
W/L_n = 0.375 \mu m/0.25 \mu m
C_L = 30 fF

normalized wrt zero input
rise-time dissipation

10/24/2005 VLSI Design I; A. Milenkovic
Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

All increase **exponentially** with temperature!

Leakage as a Function of V_T

- Continued scaling of supply voltage and the subsequent scaling of threshold voltage will make subthreshold conduction a dominant component of power dissipation.
- An 90mV/decade V_T roll-off - so each 255mV increase in V_T gives 3 orders of magnitude reduction in leakage (but adversely affects performance)
TSMC Processes Leakage and \(V_T \)

<table>
<thead>
<tr>
<th></th>
<th>CL018 G</th>
<th>CL018 LP</th>
<th>CL018 ULP</th>
<th>CL018 HS</th>
<th>CL015 HS</th>
<th>CL013 HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{dd})</td>
<td>1.8 V</td>
<td>1.8 V</td>
<td>1.8 V</td>
<td>2 V</td>
<td>1.5 V</td>
<td>1.2 V</td>
</tr>
<tr>
<td>(T_{ox}) (effective)</td>
<td>42 Å</td>
<td>42 Å</td>
<td>42 Å</td>
<td>42 Å</td>
<td>29 Å</td>
<td>24 Å</td>
</tr>
<tr>
<td>(L_{gate})</td>
<td>0.16 (\mu)m</td>
<td>0.16 (\mu)m</td>
<td>0.18 (\mu)m</td>
<td>0.13 (\mu)m</td>
<td>0.11 (\mu)m</td>
<td>0.08 (\mu)m</td>
</tr>
<tr>
<td>(I_{D_{sat}}) ((n/p)) ((\mu A/\mu m))</td>
<td>600/260</td>
<td>500/180</td>
<td>320/130</td>
<td>780/360</td>
<td>860/370</td>
<td>920/400</td>
</tr>
<tr>
<td>(I_{d_{leakage}}) ((\rho A/\mu m))</td>
<td>20</td>
<td>1.60</td>
<td>0.15</td>
<td>300</td>
<td>1,800</td>
<td>13,000</td>
</tr>
<tr>
<td>(V_{Th})</td>
<td>0.42 V</td>
<td>0.63 V</td>
<td>0.73 V</td>
<td>0.40 V</td>
<td>0.29 V</td>
<td>0.25 V</td>
</tr>
<tr>
<td>FET Perf. ((GHz))</td>
<td>30</td>
<td>22</td>
<td>14</td>
<td>43</td>
<td>52</td>
<td>80</td>
</tr>
</tbody>
</table>

From MPR, 2000

Exponential Increase in Leakage Currents

From De, 1999
Review: Energy & Power Equations

\[E = C_L V_{DD}^2 P_{0\rightarrow1} + t_{sc} V_{DD} I_{\text{peak}} P_{0\rightarrow1} + V_{DD} I_{\text{leakage}} \]

\[f_{0\rightarrow1} = P_{0\rightarrow1} \times f_{\text{clock}} \]

\[P = C_L V_{DD}^2 f_{0\rightarrow1} + t_{sc} V_{DD} I_{\text{peak}} f_{0\rightarrow1} + V_{DD} I_{\text{leakage}} \]

Dynamic power (~90% today and decreasing relatively)
Short-circuit power (~8% today and decreasing absolutely)
Leakage power (~2% today and increasing)

Power and Energy Design Space

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Non-active Modules</td>
</tr>
<tr>
<td>Active</td>
<td>Logic Design</td>
<td>Reduced (V_{dd})</td>
</tr>
<tr>
<td></td>
<td>Reduced (V_{dd})</td>
<td>Sizing Multi-(V_{dd})</td>
</tr>
<tr>
<td>Leakage</td>
<td>+ Multi-(V_T)</td>
<td>Sleep Transistors Multi-(V_{dd})</td>
</tr>
</tbody>
</table>
Dynamic Power as a Function of Device Size

- Device sizing affects dynamic energy consumption
 - gain is largest for networks with large overall effective fan-outs (F = C_L/C_L,1)
- The optimal gate sizing factor (f) for dynamic energy is smaller than the one for performance, especially for large F's
 - e.g., for F=20,
 \[f_{opt}(energy) = 3.53 \quad \text{while} \quad f_{opt}(performance) = 4.47 \]
- If energy is a concern avoid oversizing beyond the optimal

Dynamic Power Consumption is Data Dependent

- Switching activity, \(P_{0\rightarrow1} \), has two components
 - A static component – function of the logic topology
 - A dynamic component – function of the timing behavior (glitching)

\[
P_{0\rightarrow1} = P_{out=0} \times P_{out=1} = P_0 \times (1-P_0)
\]

\[P_{A=1} = 1/2 \]
\[P_{B=1} = 1/2 \]

NOR static transition probability
\[= \frac{3}{4} \times \frac{1}{4} = \frac{3}{16} \]
NOR Gate Transition Probabilities

- Switching activity is a strong function of the input signal statistics
 - P_A and P_B are the probabilities that inputs A and B are one

Transition Probabilities for Some Basic Gates

\[
\begin{array}{|c|c|}
\hline
\text{Gate} & P_{0 \rightarrow 1} = P_{\text{out}=0} \times P_{\text{out}=1} \\
\hline
\text{NOR} & (1 - (1 - P_A)(1 - P_B)) \times (1 - P_A)(1 - P_B) \\
\text{OR} & (1 - P_A)(1 - P_B) \times (1 - (1 - P_A)(1 - P_B)) \\
\text{NAND} & P_A P_B \times (1 - P_A P_B) \\
\text{AND} & (1 - P_A P_B) \times P_A P_B \\
\text{XOR} & (1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B) \\
\hline
\end{array}
\]

For X: $P_{0 \rightarrow 1} =$

For Z: $P_{0 \rightarrow 1} =$
Transition Probabilities for Some Basic Gates

<table>
<thead>
<tr>
<th>Gate</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR</td>
<td>((1 - (1 - P_A)(1 - P_B)) \times (1 - P_A)(1 - P_B))</td>
</tr>
<tr>
<td>OR</td>
<td>((1 - P_A)(1 - P_B) \times (1 - (1 - P_A)(1 - P_B)))</td>
</tr>
<tr>
<td>NAND</td>
<td>(P_A P_B \times (1 - P_A P_B))</td>
</tr>
<tr>
<td>AND</td>
<td>((1 - P_A P_B) \times P_A P_B)</td>
</tr>
<tr>
<td>XOR</td>
<td>((1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B))</td>
</tr>
</tbody>
</table>

For X: \(P_{0 \rightarrow 1} = P_0 \times P_1 = (1 - P_A) P_A = 0.5 \times 0.5 = 0.25\)

For Z: \(P_{0 \rightarrow 1} = P_0 \times P_1 = (1 - P_X P_B) P_X P_B = (1 - (0.5 \times 0.5)) \times (0.5 \times 0.5) = 3/16\)

Inter-signal Correlations

- Determining switching activity is complicated by the fact that signals exhibit correlation in space and time
 - reconvergent fan-out

 \[P(Z=1) = P(B=1) \times P(X=1 | B=1)\]

- Have to use conditional probabilities
Inter-signal Correlations

- Determining switching activity is complicated by the fact that signals exhibit correlation in space and time
 - reconvergent fan-out
 \[(1-0.5)(1-0.5)x(1-(1-0.5)(1-0.5)) = 3/16\]

\[
P(Z=1) = P(B=1) \cdot P(X=1 | B=1)
\]
\[
= 0.5 \cdot 1 = 0.5
\]
\[
P(Z=0) = 1 - P(B=1) \cdot P(X=1 | B=1) = 0.5
\]
\[
P(0->1) = 0.5 \cdot 0.5 = 0.25
\]

- Have to use conditional probabilities

Logic Restructuring

Logic restructuring: changing the topology of a logic network to reduce transitions

\[
AND: P_{0\rightarrow 1} = P_0 \times P_1 = (1 - P_A P_B) \times P_A P_B
\]

- Chain implementation has a lower overall switching activity than the tree implementation for random inputs
 - Ignores glitching effects
Beneficial to postpone the introduction of signals with a high transition rate (signals with signal probability close to 0.5)

\[(1-0.5\times0.2)x(0.5\times0.2)=0.09 \quad (1-0.2\times0.1)x(0.2\times0.1)=0.0196\]
Glitching in Static CMOS Networks

• Gates have a nonzero propagation delay resulting in spurious transitions or glitches (dynamic hazards)
 – glitch: node exhibits multiple transitions in a single cycle before settling to the correct logic value

\[\text{ABC} \quad \begin{array}{c|c|c}
101 & 000 \\
\hline
X & \hline
Z & \hline
\end{array} \]

Unit Delay
Glitching in an RCA

Balanced Delay Paths to Reduce Glitching

Glitching is due to a mismatch in the path lengths in the logic network; if all input signals of a gate change simultaneously, no glitching occurs.

So equalize the lengths of timing paths through logic.
Power and Energy Design Space

<table>
<thead>
<tr>
<th>Energy</th>
<th>Design Time</th>
<th>Non-active Modules</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Logic Design Reduced (V_{dd}) Sizing Multi-(V_{dd})</td>
<td>Clock Gating</td>
<td>DFS, DVS (Dynamic Freq, Voltage Scaling)</td>
</tr>
<tr>
<td>Leakage</td>
<td>+ Multi-(V_T)</td>
<td>Sleep Transistors Multi-(V_{dd}) Variable (V_T)</td>
<td>+ Variable (V_T)</td>
</tr>
</tbody>
</table>

Dynamic Power as a Function of \(V_{DD}\)

- Decreasing the \(V_{DD}\) decreases dynamic energy consumption (quadratically)
- But, increases gate delay (decreases performance)

- Determine the critical path(s) at design time and use high \(V_{DD}\) for the transistors on those paths for speed. Use a lower \(V_{DD}\) on the other gates, especially those that drive large capacitances (as this yields the largest energy benefits).
Multiple V\textsubscript{DD} Considerations

- How many V\textsubscript{DD}? – Two is becoming common
 - Many chips already have two supplies (one for core and one for I/O)
- When combining multiple supplies, level converters are required whenever a module at the lower supply drives a gate at the higher supply (step-up)
 - If a gate supplied with V\textsubscript{DDL} drives a gate at V\textsubscript{DDH}, the PMOS never turns off
 - The cross-coupled PMOS transistors do the level conversion
 - The NMOS transistor operate on a reduced supply
 - Level converters are not needed for a step-down change in voltage
 - Overhead of level converters can be mitigated by doing conversions at register boundaries and embedding the level conversion inside the flipflop

Dual-Supply Inside a Logic Block

- Minimum energy consumption is achieved if all logic paths are critical (have the same delay)
- Clustered voltage-scaling
 - Each path starts with V\textsubscript{DDH} and switches to V\textsubscript{DDL} (gray logic gates) when delay slack is available
 - Level conversion is done in the flipflops at the end of the paths
Power and Energy Design Space

<table>
<thead>
<tr>
<th></th>
<th>Constant Throughput/Latency</th>
<th>Variable Throughput/Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Design Time</td>
<td>Non-active Modules</td>
</tr>
<tr>
<td>Active</td>
<td>Logic Design</td>
<td>Clock Gating</td>
</tr>
<tr>
<td></td>
<td>Reduced V_{dd} Sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-V_{dd}</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>$+ Multi-V_T$</td>
<td>Sleep Transistors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-V_{dd}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variable V_T</td>
</tr>
</tbody>
</table>

Stack Effect

- Leakage is a function of the circuit topology and the value of the inputs

\[
V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})
\]

where V_{T0} is the threshold voltage at $V_{SB} = 0$; V_{SB} is the source-bulk (substrate) voltage; γ is the body-effect coefficient

- Leakage is least when $A = B = 0$
- Leakage reduction due to stacked transistors is called the stack effect
Short Channel Factors and Stack Effect

- In short-channel devices, the subthreshold leakage current depends on V_{GS}, V_{BS} and V_{DS}. The V_T of a short-channel device decreases with increasing V_{DS} due to DIBL (drain-induced barrier loading).
 - Typical values for DIBL are 20 to 150mV change in V_T per voltage change in V_{DS} so the stack effect is even more significant for short-channel devices.
 - V_X reduces the drain-source voltage of the top nfet, increasing its V_T and lowering its leakage.

- For our 0.25 micron technology, V_X settles to ~100mV in steady state so $V_{BS} = -100mV$ and $V_{DS} = V_{DD} - 100mV$ which is 20 times smaller than the leakage of a device with $V_{BS} = 0mV$ and $V_{DS} = V_{DD}$.

Leakage as a Function of Design Time V_T

- Reducing the V_T increases the subthreshold leakage current (exponentially)
 - 90mV reduction in V_T increases leakage by an order of magnitude.
- But, reducing V_T decreases gate delay (increases performance).

- Determine the critical path(s) at design time and use low V_T devices on the transistors on those paths for speed. Use a high V_T on the other logic for leakage control.
 - A careful assignment of V_T's can reduce the leakage by as much as 80%.
Dual-Thresholds Inside a Logic Block

- Minimum energy consumption is achieved if all logic paths are critical (have the same delay)
- Use lower threshold on timing-critical paths
 - Assignment can be done on a per gate or transistor basis; no clustering of the logic is needed
 - No level converters are needed

```
10/24/2005  VLSI Design I; A. Milenkovic
```

Variable V_T (ABB) at Run Time

- $V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F| + V_{SB}} - \sqrt{|2\phi_F|})$
 - For an n-channel device, the substrate is normally tied to ground ($V_{SB} = 0$)
 - A negative bias on V_{SB} causes V_T to increase
 - Adjusting the substrate bias at run time is called adaptive body-biasing (ABB)
 - Requires a dual well fab process