Review: CMOS Circuit Styles

- Static complementary CMOS - except during switching, output connected to either VDD or GND via a low-resistance path
 - high noise margins
 - full rail to rail swing
 - VOH and VOL are at VDD and GND, respectively
 - low output impedance, high input impedance
 - no steady state path between VDD and GND (no static power consumption)
 - delay a function of load capacitance and transistor resistance
 - comparable rise and fall times (under the appropriate transistor sizing conditions)

- Dynamic CMOS - relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes
 - simpler, faster gates
 - increased sensitivity to noise
Review: Static Complementary CMOS

Pull-up network (PUN) and pull-down network (PDN)

PMOS transistors only
pull-up: make a connection from V_{DD} to F when \(F(\text{In}_1, \text{In}_2, \ldots, \text{In}_N) = 1 \)

NMOS transistors only
pull-down: make a connection from F to GND when \(F(\text{In}_1, \text{In}_2, \ldots, \text{In}_N) = 0 \)

PUN and PDN are dual logic networks

AOI221

9/18/2006 VLSI Design I; A. Milenkovic
Pass Transistor Logic

• Primary inputs drive both gate and source/drain terminals
• NMOS switch closes when the gate input is high

\[X = Y \text{ if } A \text{ and } B \]

\[X = Y \text{ if } A \text{ or } B \]

• Remember –
NMOS transistors pass a strong 0 but a weak 1
PMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- PMOS switch closes when the gate input is low

\[X = Y \text{ if } A \text{ and } B = A + B \]

\[X = Y \text{ if } A \text{ or } B = A \cdot B \]

- Remember – PMOS transistors pass a strong 1 but a weak 0

Pass Transistor (PT) Logic

- Gate is static – a low-impedance path exists to both supply rails under all circumstances
- N transistors instead of 2N
- No static power consumption
- Ratioless
- Bidirectional (versus undirectional)
VTC of PT AND Gate

Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)

Differential PT Logic (CPL)

Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)
CPL Properties

- **Differential** so complementary data inputs and outputs are always available (so don’t need extra inverters)
- Still static, since the output defining nodes are always tied to V_{DD} or GND through a low resistance path
- Design is **modular**; all gates use the same topology, only the inputs are permuted.
- Simple XOR makes it attractive for structures like **adders**
- Fast (assuming number of transistors in series is small)
- Additional routing overhead for complementary signals
- Still have static power dissipation problems

CPL Full Adder

![CPL Full Adder Diagram]
CPL Full Adder

- **A**, **B**, and **Cin** are inputs.
- **Sum** and **Cout** are outputs.
- The circuit includes AND, OR, and NOT gates.

NMOS Only PT Driving an Inverter

- \(I_{in} = V_{DD} \)
- \(V_x = V_{DD} - V_{Tn} \)

- **Vx** does not pull up to **VDD**, but **VDD** – **Vtn**

- Threshold voltage drop causes static power consumption (\(M_2 \) may be weakly conducting forming a path from **VDD** to **GND**)

- Notice \(V_{Tn} \) increases of pass transistor due to body effect (**Vsb**)
 Voltage Swing of PT Driving an Inverter

Body effect – large V_{SB} at x - when pulling high (B is tied to GND and S charged up close to V_{DD})

So the voltage drop is even worse

$$V_x = V_{DD} - (V_{Tn0} + \gamma(\sqrt{|2\phi_f| + V_x} - \sqrt{|2\phi_f|}))$$

Cascaded NMOS Only PTs

Pass transistor gates should never be cascaded as on the left

Logic on the right suffers from static power dissipation and reduced noise margins
Solution 1: Level Restorer

- Full swing on x (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT since Restorer is only active when A is high
- For correct operation M_r must be sized correctly (ratioed)

Transient Level Restorer Circuit Response

- Restorer has speed and power impacts: increases the capacitance at x, slowing down the gate; increases t_r (but decreases t_f)
Solution 2: Multiple VT Transistors

- Technology solution: Use (near) zero V_T devices for the NMOS PTs to eliminate *most* of the threshold drop (body effect still in force preventing full swing to V_{DD})

![Diagram showing multiple VT transistors with low V_T transistors and sneak path](image)

- Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V_{GS} is below V_T)

Solution 3: Transmission Gates (TGs)

- Most widely used solution

![Diagram showing transmission gates](image)

- Full swing bidirectional switch controlled by the gate signal C, $A = B$ if $C = 1$
Solution 3: Transmission Gates (TGs)

- Most widely used solution

- Full swing bidirectional switch controlled by the gate signal C, A = B if C = 1

![Diagram of Transmission Gates]

Resistance of TG

![Graph showing resistance vs. output voltage]

9/18/2006 VLSI Design I; A. Milenkovic
TG Multiplexer

\[F = \overline{(In_1 \cdot S + In_2 \cdot \overline{S})} \]

Transmission Gate XOR

\[A \oplus B \]
Transmission Gate XOR

\[A \oplus B \]

\[\text{weak 0 if } !A \]

\[\text{weak 1 if } A \]

\[\text{an inverter} \]

TG Full Adder

\[C_{in} \]

\[B \]

\[A \]

\[\text{Sum} \]

\[C_{out} \]
Differential TG Logic (DPL)

\[F = A \oplus B \]
\[F = A \cap B \]

AND/NAND

XOR/XNOR