1. (5 points) What kind of hardware element will be inferred by a synthesis tool from the following model?

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity WIDGET is
    Port (A, B : in SIGNED (0 to 2);
          CLK, RESET : in std_logic;
          Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
    process (CLK, RESET)
    begin
        if (RESET = '1' then)
            Z <= '0';
        elsif (CLK = '1') then
            Z <= A nor B;
        end if;
    end process;
end EXAMPLE;
```

2. (9 points) Draw the transistor-level diagram of a CMOS three-input NAND gate.
3. (12 points) Modify the following VHDL model by adding a parameter that sets the number of flip-flops in the counter. Also, add an input which is loaded with an asynchronous load input signal which is active low.

```vhdl
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity UPCOUNT is
    port ( CLOCK, RESETN, E : in std_logic;
          Q : out std_logic_vector (3 downto 0));
end UPCOUNT;

architecture BEHAVIOR of UPCOUNT is
    signal COUNT : std_logic_vector (3 downto 0);
begin
    process (CLOCK, RESETN)
    begin
        if RESETN = '0' then
            COUNT <= "0000";
        elsif (CLOCK'event and CLOCK = '1') then
            if E = '1' then
                COUNT <= COUNT + 1;
            else
                COUNT <= COUNT;
            end if;
        end if;
    end process
    Q <= COUNT;
```
Consider the following VHDL code:

```
-- Entity declaration

entity SCHED2 is
  port (A, B, C, D, E, F: in INTEGER;
        CLK : in BIT;
        W, X, Y: out INTEGER);
end SCHED2;

-- Architecture declaration

architecture HIGH_LEVEL of SCHED2 is
  signal Z: INTEGER;
begin
  X <= (A - B) * C * D;
  Y <= (A * B) + (E + F)/D;
  W <= (C + F) * B
end HIGH_LEVEL;
```

4. (18 points) The following tasks refer to the VHDL code above. Assume that there are no hardware constraints.
 a. (6 points) Draw a data flow graph.
b. (6 points) Derive an ASAP schedule.

c. (6 points) Derive an ALAP schedule.
5. (10 points) Derive a schedule using the freedom-directed method for the VHDL code above, using the following hardware constraint; all operations are done in an ALU module and there are two ALU modules available.

6. (4 points) List the four types of paths that must be considered when doing timing analysis of sequential circuits.

__
__
__
__
7. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. (2 points) A(n) __________________ is an integrated circuit produced for a specific application and produced in relatively small volumes.

9. (2 points) __________________ is an annoyingly strongly typed language.
10. (15 points) Create a VHDL entity named `mux4to1` that represents a 4-to-1 multiplexer which has an architecture which uses a case statement to represent the functionality of the multiplexer. Create a second entity and its accompanying architecture that represents a 16-to-1 decoder by using four instances of the `mux4to1` entity.
11. (8 points) If the NRE costs for FPGA and CBIC circuits are $25,000 and $166,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $20 and $6, respectively, what is the break-even manufacturing volume for these two types of circuits?

12. (2 points) _________________________ are primitives that are all the same height and varying widths.

13. (3 points) The three types of primary design units are ___________________, ___________________, and ___________________.