1. (10 points) Modify the following VHDL model by adding a parameter that sets the number of flip-flops in the counter. Also, add an input which is loaded with an asynchronous load input signal which is active low.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity UPCOUNT is
 port (CLOCK, RESETN, E : in std_logic;
 Q : out std_logic_vector (3 downto 0));
end UPCOUNT;

architecture BEHAVIOR of UPCOUNT is
 signal COUNT : std_logic_vector (3 downto 0);
begin
 process (CLOCK, RESETN)
 begin
 if RESETN = '0' then
 COUNT <= "0000";
 elsif (CLOCK'event and CLOCK = '1') then
 if E = '1' then
 COUNT <= COUNT + 1;
 else
 COUNT <= COUNT;
 end if;
 end if;
 end process;
 Q <= COUNT;
end BEHAVIOR;
2. (5 points) What kind of hardware element will be inferred by a synthesis tool from the following model?

library ieee;
use ieee.std_logic_1164.all;

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK, RESET : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
 process (CLK, RESET)
 begin
 if (RESET = '1') then
 Z <= '0';
 elsif (CLK = '1') then
 Z <= A nor B;
 end if;
 end process;
end EXAMPLE;

3. (8 points) Draw the transistor-level diagram of a CMOS three-input NAND gate.
Consider the following VHDL code:

```vhdl
-- Entity declaration
entity SCHED2 is
    port (A, B, C, D, E, F: in INTEGER;
          CLK : in BIT;
          W, X, Y: out INTEGER);
end SCHED2;

-- Architecture declaration
architecture HIGH_LEVEL of SCHED2 is
    signal Z: INTEGER;
begin
    X <= (A - B) * C * D;
    Y <= (A * B) + (E + F)/D;
    W <= (C + F) * B
end HIGH_LEVEL;
```

4. (15 points) The following tasks refer to the VHDL code above. Assume that there are no hardware constraints.
 a. (5 points) Draw a data flow graph.
b. (5 points) Derive an ASAP schedule.
c. (5 points) Derive an ALAP schedule.
5. (10 points) Derive a schedule using the freedom-directed method for the VHDL code above, using the following hardware constraint; all operations are done in an ALU module and there are two ALU modules available.

6. (4 points) List the four types of paths that must be considered when doing timing analysis of sequential circuits.

7. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. (1 point) A(n) ______________________ is an integrated circuit produced for a specific application and produced in relatively small volumes.

9. (1 point) ______________________ is an annoyingly strongly typed language.
10. (15 points) Create a VHDL entity named `mux4to1` that represents a 4-to-1 multiplexer which has an architecture which uses a case statement to represent the functionality of the multiplexer. Create a second entity and its accompanying architecture that represents a 16-to-1 decoder by using four instances of the `mux4to1` entity.
11. (10 points) Develop a VHDL entity and architecture for a D flip-flop with synchronous reset. Use a generic to represent TPCQ, the time it takes for a change to appear on Q after C undergoes a positive transition.

12. (6 points) If the NRE costs for FPGA and CBIC circuits are $25,000 and $166,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $20 and $6, respectively, what is the break-even manufacturing volume for these two types of circuits?

13. (2 points) _________________________ are primitives that are all the same height and varying widths.

14. (3 points) The three primary types of design units are ________________, ____________________, and ____________________