1. (12 points) Modify the following VHDL model to use process(es) instead of blocks.

```vhdl
use WORK.TSL.all,WORK.SYS.all;
entity I8212 is
  generic (GDEL,FFDEL,BUFDEL: TIME);
  port (DI: in WORD;
       DO: out WORD;
       NDS1,DS2,MD,STB,NCLR: in BIT;
       NINT: out BIT := '1');
end I8212;
architecture BEHAVIOR of I8212 is
begin
I8212_BLK: block
  signal S0,S1,S2,S3,S4: BIT;
  signal SRQ: BIT;
  signal Q: WORD;
begin
  INT_BLK:
    block (S1='1' and S4='1')
    begin
      Q <= guarded DI after FFDEL;
      Q <= "0000000" after FFDEL when (S1='0' and S4='0') else Q;
      DO <= Q after BUFDEL when (S3 = '1') else "ZZZZZZZZ" after BUFDEL;
    end block INT_BLK;
  S0 <= not NDS1 and DS2 after GDEL;
  S1 <= (S0 and MD) or (STB and not MD) after (2*GDEL);
  S2 <= (S0 nor (not S4)) after GDEL;
  S3 <= (S0 or MD) after GDEL;
  S4 <= (S1 or NCLR) after GDEL;
  SRQ <= '1' after FFDEL when (S2= '0') else '0' after FFDEL when (S2= '1') and (not STB'STABLE) and (STB='0') else SRQ;
  NINT <= not SRQ nor S0 after GDEL;
end block I8212_BLK;
end BEHAVIOR;
```
2. (5 points) What kind of hardware element will be inferred by a synthesis tool from the following model?

library ieee;
use ieee.std_logic_1164.all;

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK, RESET : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
 process (CLK, RESET)
 begin
 if (RESET = '1' then)
 Z <= '0';
 elsif (CLK = '1') then
 Z <= A nor B;
 end if;
 end process;
end EXAMPLE;

3. (5 points) Draw the transistor-level diagram of a CMOS inverter.
Consider the following VHDL code:

```vhdl
-- Entity declaration
---------------------------------------
entity SCHED2 is
    port (A, B, C, D, E, F: in INTEGER;
        CLK : in BIT;
        W, X, Y: out INTEGER);
end SCHED2;
---------------------------------------
-- Architecture declaration
---------------------------------------
architecture HIGH_LEVEL of SCHED2 is
    signal Z: INTEGER;
begin
    X <= (A – B) * Z;
    Y <= (A * B) + Z;
    Z <= (C * D) + D * (E + F);
end HIGH_LEVEL;
```

4. (18 points) The following tasks refer to the VHDL code above. Assume that there are no hardware constraints.
 a. (6 points) Draw a data flow graph.
b. (6 points) Derive an ASAP schedule.
c. (6 points) Derive an ALAP schedule.
5. (10 points) Derive a list schedule using the critical path priority metric for the VHDL code above, using the following hardware constraint; all operations are done in an ALU module and there are two ALU modules available.

6. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. (1 point) ________________ is the process of transforming a behavioral description into a structural gate-level circuit.

8. (18. points) Design a Moore state machine in VHDL which converts NRZ (non-return-to-zero) coding to Manchester coding. In NRZ coding, each bit is transmitted for one bit time without any change. For the Manchester code, a 0 is transmitted as 0 for the first half of the bit time and 1 for the second half, but a 1 is transmitted as 1 for the first half and 0 for the second half. In order to do this conversion, use a clock(CLOCK2) that is twice the frequency of the basic clock. Note that if the NRZ bit is 0, it will be 0 for two CLOCK2 periods. Similarly, if the NRZ bit is 1, it will be 1 for two CLOCK2 periods. Your design should have an active low synchronous reset and work with CLOCK2.
9. (12 points) Write a VHDL entity and architecture of a two-input AND gate with the generics, TPLH an

10. (5 points) If the NRE costs for FPGA and CBIC circuits are $21,000 and $187,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $18 and $5, respectively, what is the break-even manufacturing volume for these two types of circuits?

11. (1 point) A(n) ______________________ is an integrated circuit produced for a specific application and produced in relatively small volumes.

12. (1 point) ____________________ is an annoyingly strongly typed language.

13. (1 point) _________________________ removes the hierarchy in a circuit, so the circuit has a single level.

14. (1 point) _________________________ is the hardest problem.