VHDL Problem

use ieee.std_logic_unsigned.all;
entity UPCOUNT is
 port (CLOCK, RESETN, E : in std_logic;
 Q : out std_logic_vector (3 downto 0));
end UPCOUNT;
architecture BEHAVIOR of UPCOUNT is
 signal COUNT : std_logic_vector (3 downto 0);
begin
 process (CLOCK, RESETN)
 begin
 if RESETN = '0' then
 COUNT <= 000;
 elsif (CLOCK event and CLOCK = '1') then
 if E = '1' then
 COUNT <= COUNT + 1;
 else
 COUNT <= COUNT;
 end if;
 end if;
 end process;
 Q <= COUNT;
end BEHAVIOR;
Synthesis Style Question

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK, RESET : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;
architecture EXAMPLE of WIDGET is
begin
 process (CLK, RESET)
 begin
 if (RESET = '1') then
 Z <= '0';
 elsif (CLK = '1') then
 Z <= A nor B;
 end if;
 end process;
end EXAMPLE;

Another Synthesis Style Question

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;
architecture EXAMPLE of WIDGET is
begin
 process (CLK)
 begin
 if (CLK = '1') then
 Z <= A nor B;
 end if;
 end process;
end EXAMPLE;
Scheduling Example

entity SCHED2 is
 port (A, B, C, D, E, F: in INTEGER;
 CLK : in BIT;
 W, X, Y: out INTEGER);
end SCHED2;

architecture HIGH_LEVEL of SCHED2 is
 signal Z: INTEGER;
begin
 X <= (A - B) * C * D;
 Y <= (A * B) + (E + F) / D;
 W <= (C + F) * B
end HIGH_LEVEL;

Scheduling Example-ALAP

entity SCHED2 is
 port (A, B, C, D, E, F: in INTEGER;
 CLK : in BIT;
 W, X, Y: out INTEGER);
end SCHED2;

architecture HIGH_LEVEL of SCHED2 is
 signal Z: INTEGER;
begin
 X <= (A - B) * C * D;
 Y <= (A * B) + (E + F) / D;
 W <= (C + F) * B
end HIGH_LEVEL;
Left Edge Algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
</tr>
</tbody>
</table>

VHDL Modeling

- Design a resetting sequential majority function that asserts (active high) the output if the past three inputs contain two or more 1's. Assume a Moore machine.

Sample input/output sequences are given below.
- X = 0101110110
- Z = 0000010010
Implementation Medium Choice

If the NRE costs for FPGA and CBIC circuits are $25,000 and $166,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $20 and $6, respectively, what is the break-even manufacturing volume for these two types of circuits?