VHDL Problem Statement

Modify the following VHDL model by adding a parameter that sets the number of flip-flops in the counter. Also, add an input which is loaded with an asynchronous load input signal which is active low.
use ieee.std_logic_unsigned.all;
entity UPCOUNT is
generic (N : integer);
port (CLOCK, RESETN, E : in std_logic;
 LD, LD_INPUT : in std_logic;
 Q : out std_logic_vector(N-1 downto 0));
end UPCOUNT;
architecture BEHAVIOR of UPCOUNT is
signal COUNT : std_logic_vector(N-1 downto 0);
begin
process (CLOCK, RESETN)
begin
if RESETN = '0' then
 COUNT <= '0' & '0' & '0' & '0';
elif (CLOCK event and CLOCK = '1') then
 if E = '1' then
 COUNT <= COUNT + 1;
 else
 COUNT <= COUNT;
 end if;
end process;
Q <= COUNT;
end BEHAVIOR;
architecture BEHAVIOR of UP_COUNT is
signal COUNT : std_logic_vector (N-1 downto 0);
begin
process (CLOCK, RESETN, LD)
begin
 if RESETN = 0 then
 COUNT <= (OTHERS => 0);
 elsif (LD = 0) then
 COUNT <= LD_INPUT;
 elsif (CLOCK event and CLOCK = 1) then
 if E = 1 then
 COUNT <= COUNT + 1;
 else
 COUNT <= COUNT;
 end if;
 end process;
Q <= COUNT;
end BEHAVIOR;

Question:
What kind of hardware element will be inferred by a synthesis tool from the following model?

Answer:
A latch, since the behavior is level sensitive.
Synthesis Style Model

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK, RESET : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
 process (CLK, RESET)
 begin
 if (RESET = '1') then
 Z <= '0';
 elsif (CLK = '1') then
 Z <= A or B;
 end if;
 end process;
end EXAMPLE;

More Synthesis Style

Question:
What kind of hardware will be inferred by a synthesis tool from the following model?

Answer:
Synopsys: A latch, since EVENT is not present.
Leonardo: A flip-flop, since EVENT is implied.
Second Synthesis Style Model

entity WIDGET is
 Port (A, B : in SIGNED (0 to 2);
 CLK : in std_logic;
 Z : out SIGNED(0 to 2));
end WIDGET;
architecture EXAMPLE of WIDGET is
begin
 process (CLK)
 begin
 if (CLK = '1') then
 Z <= A nor B;
 end if;
 end process;
end EXAMPLE;

Scheduling Example

Question:
Consider the following VHDL code. Assuming that there are no hardware constraints and that you have an ALU module that performs addition, subtraction, multiplication, and division, draw a data flow graph.

entity SCHED2 is
 port (A, B, C, D, E, F: in INTEGER;
 CLK : in BIT;
 W, X, Y: out INTEGER);
end SCHED2;
architecture HIGH_LEVEL of SCHED2 is
begin
 X <= (A - B) * C * D;
 Y <= (A * B) + (E + F)/D;
 W <= (C + F) * B
end HIGH_LEVEL;
Question:
Consider the following VHDL code. Assuming that you have two ALU modules that perform addition, subtraction, multiplication, and division, derive an ALAP schedule.

```vhdl
entity SCHED2 is
  port (A, B, C, D, E, F: in INTEGER;
        CLK : in BIT;
        W, X, Y, Z: out INTEGER);
  end SCHED2;

architecture HIGH_LEVEL of SCHED2 is
  signal Z: INTEGER;
begin
  X <= (A - B) * C * D;
  Y <= (A + B) + (E + F)/D;
  W <= (C + F) * B
  end HIGH_LEVEL;
```
ALAP Scheduling Example Answer

Step	Ready List	Scheduled Items
n | (3, 7, 9) | 3, 7
n-1 | (9, 1, 2, 4, 6, 8) | 9, 1
n-2 | (2, 4, 6, 8) | 2, 4
n-3 | (6, 8) | 6, 8
n-4 | (5) | 5

So, n = 5.

Left Edge Algorithm

Question: For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

Answer:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>X</td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
</tr>
</tbody>
</table>

Electrical and Computer Engineering
Electrical and Computer Engineering

VHDL Modeling

- Design a resetting sequential majority function that asserts (active high) the output if the past three inputs contain two or more 1s. Assume a Moore machine.

Sample input/output sequences are given below.

- \(X = 0101110110 \)
- \(Z = 0000010010 \)

Electrical and Computer Engineering

VHDL Modeling Answer

```vhdl
entity SEQMAJ is
    port (R, I, CLK: in BIT;
         O : out BIT);
end SEQMAJ;

architecture FSM_RTL of SEQMAJ is
    type STATE_TYPE is (S0, S1, S2, S3, S4, S5, S6, S7);
    signal STATE: STATE_TYPE;
begin
```
VHDL Modeling Answer (Continued)

-- Process to update state at end of each clock period.

NEXT_STATE: process (R, CLK)
begin
 if (R = '0') then
 STATE <= S0;
 elsif (CLK='1'and CLK'event) then
 case STATE is
 when S0 =>
 if (I = '0') then
 STATE <= S1;
 else
 STATE <= S2;
 end if;
 when S1 =>
 if (I = '0') then
 STATE <= S3;
 else
 STATE <= S4;
 end if;
 when S2 =>
 if (I = '0') then
 STATE <= S4;
 else
 STATE <= S5;
 end if;
 when S3 =>
 STATE <= S6;
 when S4 =>
 if (I = '0') then
 STATE <= S6;
 else
 STATE <= S7;
 end if;
 when S5 =>
 STATE <= S7;
 end case;
 end if;
end process;

VHDL Modeling Answer (Continued)

when S2 =>
 if (I = '0') then
 STATE <= S4;
 else
 STATE <= S5;
 end if;
when S3 =>
 STATE <= S6;
when S4 =>
 if (I = '0') then
 STATE <= S6;
 else
 STATE <= S7;
 end if;
when S5 =>
 STATE <= S7;
VHDL Modeling Answer (Continued)

when S6 =>
 if (I = '0') then
 STATE <= S1;
 else
 STATE <= S2;
 end if;
when S7 =>
 if (I = '0') then
 STATE <= S1;
 else
 STATE <= S2;
 end if;
end case;
end if;
end process NEXT_STATE;

-- Output process

OUTPUT: process (STATE)
begin
 case STATE is
 when S7 =>
 O <= '1';
 when others =>
 O <= '0';
 end case;
end process OUTPUT;
end FSM_RTL;
Question:
If the NRE costs for FPGA and CBIC circuits are $25,000 and $166,000, respectively, and the cost of individual parts for FPGA and CB IC circuits are $20 and $6, respectively, what is the break-even manufacturing volume for these two types of circuits?

Answer:
\[25,000 + 20x = 166,000 + 6x\]
\[14x = 141,000\]
\[x = 10,071\]