1. (7 points) Draw the transistor-level diagram of a CMOS two-input NOR gate.

2. (10 points) Write a VHDL entity (3 points) and architecture (7 points) of a two-input OR gate with the generics, TPLH and TPHL, which reflect the time for the output to make a low to high or high to low transition, respectively.
3. (1 point) ________________ is the process of making the connections between standard cells.

4. (5 points) If the NRE costs for FPGA and CBIC circuits are $21,000 and $187,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $15 and $7, respectively, what is the break-even manufacturing volume for these two types of circuits?

5. (5 points) What kind of hardware element will be inferred by a synthesis tool from the following model?

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity WIDGET is
  Port (A, B : in SIGNED (0 to 2);
        CLK, RESET : in std_logic;
        Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
  process (CLK, RESET)
  begin
    if (CLK'event and CLK = '1') then
      if (RESET = '1') then
        Z <= '0';
      else
        Z <= A nor B;
      end if;
    end if;
  end process;
end EXAMPLE;
```
6. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. (1 point) Typically, a ______________________ is developed to validate a VHDL behavioral model.

8. (1 point) A(n) _______________________ provides the gate-level circuit with accurate timing backannotated from the layout.

9. (1 point) _________________ are inserted into VHDL models to give instructions to synthesis or other tools.
10. (18 points) Create a VHDL entity named \texttt{en_dec_328} that represents a 3-to-8 decoder with an active-low enable input which has an architecture which uses a case statement to represent the functionality of the decoder. Create a second entity and its accompanying architecture that represents a 4-to-16 decoder by using two instances of the \texttt{en_dec_328} entity.
11. (15 points) Modify the following VHDL model to use block(s) instead of processes.

library ieee;
use ieee.std_logic_1164.all;

entity BUFF_REG is
 generic (STRB_DEL, EN_DEL, ODEL: TIME);
 port (DI: in std_logic_vector (1 to 8);
 DS1, NDS2, STRB : in std_logic;
 DO: out std_logic_vector (1 to 8));
end BUFF_REG;

architecture THREE_PROC of BUFF_REG is
 signal REG : std_logic_vector (1 to 8);
 signal ENBLD : std_logic;
begin
 PREG: process (STRB)
 begin
 if (STRB = '1') then
 REG <= DI after STRB_DEL;
 end if;
 end process PREG;

 ENABLE : process (DS1, NDS2)
 begin
 ENBLD <= DS1 and not NDS2 after EN_DEL;
 end process ENABLE;

 OUTPUT : process (REG, ENBLD)
 begin
 if (ENBLD = '1') then
 DO <= REG after ODEL;
 else
 DO <= "ZZZZZZZZ" after ODEL;
 end if;
 end process OUTPUT;
end THREE_PROC;
Consider the following VHDL code:

```
-- Entity declaration
---------------------------------------
entity SCHED2 is
    port (A, B, C, D, E, F: in INTEGER;
          CLK : in BIT;
          W, X, Y: out INTEGER);
end SCHED2;
---------------------------------------

-- Architecture declaration
---------------------------------------
architecture HIGH_LEVEL of SCHED2 is
    signal Z: INTEGER;
begin
    X <= (A – B) * Z;
    Y <= (A * B) + Z;
    Z <= (C * D) + D * (E + F);
    W <= A/F + C*C + D* (A – B);
end HIGH_LEVEL;
```

12. (14 points) The following tasks refer to the VHDL code above. Assume that there are no hardware constraints.

 a. (7 points) Derive an ASAP schedule.

 b. (7 points) Derive an ALAP schedule.
13. (10 points) Derive a list schedule using the critical path priority metric for the VHDL code above, using the following hardware constraint; all operations are done in an ALU module and there are two ALU modules available.

14. (1 point) __________________ is one algorithmic-level synthesis task.

15. (1 point) ____________________________ is the hardest problem.