1. (15 points) An old Thunderbird car has three left and three right tail lights, which flash in unique patterns to indicate left and right turns.

Left-turn pattern: Right-turn pattern:

| LC | LB | LA | RA | RB | RC | LC | LB | LA | RA | RB | RC |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
| ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
| ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● |
| ● | ● | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ● |
| ● | ● | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ● |

Design a Moore sequential network to control these lights using VHDL. The network has three inputs, LEFT, RIGHT, and HAZ. LEFT and RIGHT come from driver’s turn-signal switch and cannot be 1 at the same time. As indicated above, when LEFT = 1, the lights flash in a pattern LA on, LA and LB on, LA, LB, and LC on and all off; then the sequence repeats. When RIGHT = 1, the light sequence is similar. IF a switch from LEFT to RIGHT (or vice versa) occurs in the middle of a flashing sequence, the network should immediately go to the IDLE state (lights off) and then start the new sequence. HAZ comes from the hazard switch, and when HAZ = 1, all six lights flash on and off in unison. HAZ takes precedence if LEFT or RIGHT is also on. Assume that a clock signal is available with a frequency equal to the desired flashing rate.
2. (1 point) ____________________ is the process of making the connections between standard cells.

3. (5 points) If the NRE costs for FPGA and CBIC circuits are $21,000 and $187,000, respectively, and the cost of individual parts for FPGA and CBIC circuits are $15 and $7, respectively, what is the break-even manufacturing volume for these two types of circuits?

4. (5 points) What kind of hardware element will be inferred by a synthesis tool from the following model?

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity WIDGET is
  Port (A, B : in SIGNED (0 to 2);
        CLK, RESET : in std_logic;
        Z : out SIGNED(0 to 2));
end WIDGET;

architecture EXAMPLE of WIDGET is
begin
  process (CLK, RESET)
  begin
    if (CLK'event and CLK = '1') then
      if (RESET = '1') then
        Z <= '0';
      else
        Z <= A nor B;
      end if;
    end if;
  end process;
end EXAMPLE;
```
5. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register allocation.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. (1 point) Typically, a __________________________ is developed to validate a VHDL behavioral model.

7. (1 point) A(n) _________________________ provides the gate-level circuit with accurate timing backannotated from the layout.

8. (1 point) _________________________ are inserted into VHDL models to give instructions to synthesis or other tools.
9. (15 points) Create a VHDL entity named en_dec_328 that represents a 3-to-8 decoder with an active-low enable input which has an architecture which uses a case statement to represent the functionality of the decoder. Create a second entity and its accompanying architecture that represents a 4-to-16 decoder by using two instances of the en_dec_328 entity.

10. (5 points) Draw the transistor-level diagram of a CMOS two-input NOR gate.
11. (15 points) Modify the following VHDL model to use block(s) instead of processes.

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity BUFF_REG is
    generic (STRB_DEL, EN_DEL, ODEL: TIME);
    port (DI: in std_logic_vector (1 to 8);
          DS1, NDS2, STRB : in std_logic;
          DO: out std_logic_vector (1 to 8));
end BUFF_REG;

architecture THREE_PROC of BUFF_REG is
    signal REG : std_logic_vector (1 to 8);
    signal ENBLD : std_logic;
begin
    PREG: process (STRB)
    begin
        if (STRB = '1') then
            REG <= DI after STRB_DEL;
        end if;
    end process PREG;

    ENABLE : process (DS1, NDS2)
    begin
        ENBLD <= DS1 and not NDS2 after EN_DEL;
    end process ENABLE;

    OUTPUT : process (REG, ENBLD)
    begin
        if (ENBLD = '1') then
            DO <= REG after ODEL;
        else
            DO <= "ZZZZZZZZ" after ODEL;
        end if;
    end process OUTPUT;
end THREE_PROC;
```
Consider the following VHDL code:

```vhdl
-- Entity declaration
---------------------------------------
entity SCHED2 is
    port (A, B, C, D, E, F: in INTEGER;
          CLK : in BIT;
          W, X, Y: out INTEGER);
end SCHED2;
---------------------------------------
-- Architecture declaration
---------------------------------------
architecture HIGH_LEVEL of SCHED2 is
    signal Z: INTEGER;
begin
    X <= (A – B) * Z;
    Y <= (A * B) + Z;
    Z <= (C * D) + D * (E + F);
    W <= A/F + C*C + D* (A – B);
end HIGH_LEVEL;
```

12. (14 points) The following tasks refer to the VHDL code above. Assume that there are no hardware constraints.

 a. (7 points) Derive an ASAP schedule.

 b. (7 points) Derive an ALAP schedule.
13. (10 points) Derive a list schedule using the critical path priority metric for the VHDL code above, using the following hardware constraint; all operations are done in an ALU module and there are two ALU modules available.

14. (1 point) ___________________ is one algorithmic-level synthesis task.

15. (1 point) ___________________ is the hardest problem.