1. (20 points) Describe the following logic expression

\[(A' \cdot B' \cdot C \cdot D) + (A \cdot B \cdot C) + (B' \cdot C')\]

with a structural VHDL model using the following package located in library WORK.

```
package LOGIC_PKG is
    component AND2_OP
        port A, B, C : in BIT; Z out BIT);
    end component;
    component NAND2_OP
        port A, B : in BIT; Z out BIT);
    end component;
    component OR4_OP
        port A, B, C, D : in BIT; Z out BIT);
    end component;
end LOGIC_PKG;
```

Hint: If you don’t need all of the inputs, you can tie one or more of them to ‘0’ or ‘1’.

2. (1 point) A _________________________________ is a high-level programming language with specialized constructs for modeling hardware.
3. (15 points). Write a VHDL function that accepts a bit vector of arbitrary length and returns a bit vector that is the reverse of the input. For example:

Input: 0101111
Output: 1111010

4. (1 point) ______________ delay is the delay which represents gate delay in VHDL.

5. (1 point) All statements inside of a block are ________________.

6. (2 points) For the following function call, which function will be called? _____

```vhdl
VARIABLE a, b : INTEGER;
b := decrement (a);
```

(a) FUNCTION decrement (x : INTEGER) RETURN INTEGER;
(b) FUNCTION decrement (x : REAL) RETURN REAL;
7. (1 point) A(n) ________________ is an aggregate type in VHDL.
8. (12 points) Design a hardware device that can translate from Gray code to BCD code. The device inputs will be the four bits of the Gray code, and the device outputs will be the four bits of the equivalent BCD code. The illegal input combinations may be treated as don’t care conditions.

<table>
<thead>
<tr>
<th>Decimal Digit</th>
<th>Gray Code</th>
<th>BCD Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0110</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>1110</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>1010</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1001</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>1001</td>
</tr>
</tbody>
</table>

(a) (3 points) Write an entity for the device. (b) (9 points) Use concurrent signal assignments to model the device.
9. (5 points) Consider the following structural VHDL model.

```vhdl
entity SMODEL is
  port
    (P1 : in BIT;
     P2 : out BIT;
     P3 : inout BIT);
end SMODEL;

architecture STRUCTURE of SMODEL is
  component UNIT
    port (C1, C2, : in BIT; C3 : out BIT);
  end component;

begin
  U1 : UNIT port map (C1 => ?, C2 => ?, C3 => ?);
end STRUCTURE;
```

(a) (3 points) Complete the structural description by giving a legal set of port-to-port connections for entity ports P1, P2, and P3 and component ports C1, C2, and C3.

(b) (2 points) Is there more than one possible set of legal port-to-port connections?

10. (10 points) Write a VHDL entity (3 points) and architecture (7 points) of a two-input OR gate with the generics, TPLH and TPHL, which reflect the time for the output to make a low to high or high to low transition, respectively.
11. (20 points) Specify type declarations for the following data types.

 a. (3 points) A three valued logic system, MVL3, with values ‘0’, ‘1’, and ‘Z’. Values ‘0’ and ‘1’ have the usual logic meaning and ‘X’ means unknown. Any uninitialized data item of this type should have value ‘Z’.

 b. (3 points) A SEASON_OF_YEAR enumeration data type.

 c. (2 points) A data type MONTH_NUMBER that can have integer values in the range from 1 to 12.

 d. (2 points) A data type COST that can have real values between $0.00 and $1,405.00.

 e. (2 points) A descending range data type HIGH_WORD with integer values from 63 to 32.

 f. (4 points) A 32-bit descending-index register composite data type, REG_32_HIGH, with index valued from the type HIGH_WORD declared above, and component values of type MVL3.

 g. (4 points) A three-dimensional table, TABLE_3D, with index values and table entries all of type std_logic (which has been declared elsewhere and is visible).

12. (1 point) An entity X, when used in another entity, becomes a __________________ for the entity Y.

13. (1 point) _________________ is an example of a built-in enumerated type.
14. (10 points) Draw the state diagram for the following state machine. Is it a Moore machine or a Mealy machine?

```
ENTITY state_machine IS
  PORT (sig_in ; IN BIT; clk : IN BIT;
        sig_out : OUT BIT);
END state_machine;

ARCHITECTURE state_machine OF state_machine IS
  TYPE state_type IS (a, b, c, d, e);
  SIGNAL current_state, next_state : state_type;
BEGIN
  PROCESS (sig_in, current_state)
  BEGIN
    sig_out <= '0';
    next_state <= b;
    CASE current_state
    WHEN a =>
      IF sig_in = '0' THEN
        next_state <= a;
      ELSE
        next_state <= d;
      END IF;
      sig_out <= '1';
    WHEN b =>
      IF sig_in = '0' THEN
        next_state <= b;
      ELSE
        next_state <= c;
      END IF;
    WHEN c =>
      IF sig_in = '1' THEN
        next_state <= a;
      ELSE
        next_state <= d;
      END IF;
      sig_out <= '1';
    WHEN d =>
      IF sig_in = '0' THEN
        next_state <= e;
      END IF;
    WHEN e =>
      IF sig_in = '1' THEN
        next_state <= c;
      END IF;
    END CASE;
  END PROCESS;
  PROCESS (clk)
  BEGIN
    IF (clk'EVENT AND clk = '1') THEN
      current_state <= next_state;
    END IF;
  END PROCESS;
END state_machine;
```