REVIEW: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: \(g = 1 \)
Electrical Effort: \(h = 4 \)
Parasitic Delay: \(p = 1 \)
Stage Delay: \(d = 5 \)

Logical Effort:

- The FO4 delay is about 200 ps in a 0.6 \(\mu \)m process
- 60 ps in a 180 nm process
- 0.3 ns in an \(f/3 \) \(\mu \)m process

REVIEW: Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort
 \[G = \prod g_i \]
- Path Electrical Effort
 \[H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}} \]
- Path Effort
 \[F = \prod f_i = \prod g_i h_i \]

REVIEW: Branching Effort

- Introduce branching effort
 - Accounts for branching between stages in path
 \[b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}} \]
 \[B = \prod b_i \]
 Note: \(\prod b_i = BH \)
- Now we compute the path effort
 - \(F = GBH \)

REVIEW: Multistage Delays

- Path Effort Delay
 \[D_p = \sum l_i \]
- Path Parasitic Delay
 \[P = \sum p_i \]
- Path Delay
 \[D = \sum d_i = D_p + P \]
REVIEW: Designing Fast Circuits

\[D = \sum_i d_i = D_F + P \]

- Delay is smallest when each stage bears same effort
 \[\hat{f} = \hat{g} h_i = F_F \]
- Thus minimum delay of N stage path is
 \[D = NF_F + P \]
- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn’t require calculating gate sizes

REVIEW: Gate Sizes

- How wide should the gates be for least delay?
 \[\hat{f} = gh = g \frac{C}{C_{out}} \]
 \[\Rightarrow C_{in} = g \frac{C_{out}}{\hat{f}} \]
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

REVIEW: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

\[
\begin{array}{c|c|c|c|c|c}
\text{Initial Driver} & \text{Datapath Load} & \text{N} & \text{f} & \text{D} \\
\hline
\text{1} & \text{64} & 1234 & 65 & 234 \\
\text{2} & \text{8} & 18 & 15 & 15.3 \\
\text{3} & \text{4} & 15 & 7.8 & 2.8 \\
\text{4} & \text{2.8} & 3 & 7.8 & 2.8 \\
\end{array}
\]

Best Stage Effort

- has no closed-form solution
 \[p_{inv} + \rho (1 - \ln \rho) = 0 \]
- Neglecting parasitics (\(p_{inv} = 0 \)), we find \(\rho = 2.718 \) (e)
- For \(p_{inv} = 1 \), solve numerically for \(\rho = 3.59 \)
Sensitivity Analysis

• How sensitive is delay to using exactly the best number of stages?

• $2.4 < \rho < 6$ gives delay within 15% of optimal
 – We can be sloppy!
 – I like $\rho = 4$

Example, Revisited

• Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

• Decoder specifications:
 – 16 word register file
 – Each word is 32 bits wide
 – Each bit presents load of 3 unit-sized transistors
 – True and complementary address inputs $A[3:0]$
 – Each input may drive 10 unit-sized transistors

• Ben needs to decide:
 – How many stages to use?
 – How large should each gate be?
 – How fast can decoder operate?

Number of Stages

• Decoder effort is mainly electrical and branching

 Electrical Effort: $H = \frac{32 \times 3}{10} = 9.6$

 Branching Effort: $B = 8$

• If we neglect logical effort (assume $G = 1$)

 Path Effort: $F = GBH = 76.8$

 Number of Stages: $N = \log_4 F = 3.1$

 • Try a 3-stage design

Gate Sizes & Delay

Logical Effort: $G = 1$
Path Effort: $F = GBH = 154$
Stage Effort: $\hat{f} = 5.36$
Path Delay: $D = 22.1$
Gate sizes: $z = \frac{96 \times 15.36}{5} = 18$

$\hat{y} = \frac{18 \times 25.36}{6.7}$
Comparison

- Compare many alternatives with a spreadsheet

<table>
<thead>
<tr>
<th>Design</th>
<th>N</th>
<th>G</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND4-INV</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>29.8</td>
</tr>
<tr>
<td>NAND2-NOR2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>30.1</td>
</tr>
<tr>
<td>INV/NAND4-INV</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>22.1</td>
</tr>
<tr>
<td>NAND4-INV/INV/INV</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>21.1</td>
</tr>
<tr>
<td>NAND2-NOR2-INV/INV</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>20.5</td>
</tr>
<tr>
<td>INV/NAND2-NAND2-INV</td>
<td>4</td>
<td>16/9</td>
<td>6</td>
<td>19.7</td>
</tr>
<tr>
<td>INV-NAND2-NAND2-INV</td>
<td>5</td>
<td>16/9</td>
<td>7</td>
<td>20.4</td>
</tr>
<tr>
<td>NAND2-NAND2-NAND2-INV</td>
<td>8</td>
<td>16/9</td>
<td>8</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Review of Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Stage</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of stages</td>
<td>f</td>
<td>N</td>
</tr>
<tr>
<td>logical effort</td>
<td>(g)</td>
<td>(\sum</td>
</tr>
<tr>
<td>electrical effort</td>
<td>(h)</td>
<td>(\sum</td>
</tr>
<tr>
<td>branching effort</td>
<td>(b)</td>
<td>(\sum</td>
</tr>
<tr>
<td>effort</td>
<td>(f)</td>
<td>(\sum f)</td>
</tr>
<tr>
<td>effort delay</td>
<td>(f)</td>
<td>(\sum f)</td>
</tr>
<tr>
<td>parasitic delay</td>
<td>(p)</td>
<td>(\sum p)</td>
</tr>
<tr>
<td>delay</td>
<td>(d = f + p)</td>
<td>(D = \sum D = D_g + P)</td>
</tr>
</tbody>
</table>

Method of Logical Effort

1) Compute path effort
2) Estimate best number of stages
3) Sketch path with N stages
4) Estimate least delay
5) Determine best stage effort
6) Find gate sizes

\[
F = GBH \\
N = \log_4 F \\
D = NF^* + P \\
f = F^* \\
C_a = \frac{g_C w}{f}
\]

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about \(\log_F FO4 \) inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master

Wires
Outline

• Introduction
• Wire Resistance
• Wire Capacitance
• Wire RC Delay
• Crosstalk
• Wire Engineering
• Repeaters

Introduction

• Chips are mostly made of wires called interconnect
 – In stick diagram, wires set size
 – Transistors are little things under the wires
 – Many layers of wires
• Wires are as important as transistors
 – Speed
 – Power
 – Noise
• Alternating layers run orthogonally

Wire Geometry

• Pitch = w + s
• Aspect ratio: AR = t/w
 – Old processes had AR ≪ 1
 – Modern processes have AR ≈ 2
 • Pack in many skinny wires

Wire Resistance

\[p = \text{resistivity (}\Omega \text{m)} \]

\[R = \frac{\rho}{l} \frac{t}{w} \]
Wire Resistance

- $\rho = \text{resistivity (}\Omega\text{m})$
- $R = \frac{\rho l}{W} = \frac{1}{\rho W}$
- $R_{\square} = \text{sheet resistance (}\Omega/\square\text{)}$
 - \square is a dimensionless unit(!)
- Count number of squares
 - $R = R_{\square} \times (\# \text{ of squares})$

Sheet Resistance

- Typical sheet resistances in 180 nm process

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sheet Resistance (Ω/\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion (silicided)</td>
<td>3-19</td>
</tr>
<tr>
<td>Diffusion (no silicide)</td>
<td>50-200</td>
</tr>
<tr>
<td>Polysilicon (silicided)</td>
<td>3-19</td>
</tr>
<tr>
<td>Polysilicon (no silicide)</td>
<td>50-400</td>
</tr>
<tr>
<td>Metal 1</td>
<td>0.08</td>
</tr>
<tr>
<td>Metal 2</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal 3</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal 4</td>
<td>0.03</td>
</tr>
<tr>
<td>Metal 5</td>
<td>0.02</td>
</tr>
<tr>
<td>Metal 6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Contacts Resistance

- Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Capacitance Trends

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon = k\varepsilon_0$
 - $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
 - $k = 3.9$ for SiO$_2$
- Processes are starting to use low-k dielectrics
 - $k = 3$ (or less) as dielectrics use air pockets

Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bulk Resistivity ($\Omega*cm$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.8</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.3</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>5.3</td>
</tr>
</tbody>
</table>
M2 Capacitance Data

- Typical wires have ~ 0.2 fF/μm
 - Compare to 2 fF/μm for gate capacitance

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

 - 3-segment π-model is accurate to 3% in simulation
 - L-model needs 100 segments for same accuracy!
 - Use single segment π-model for Elmore delay

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide

 - Construct a 3-segment π-model
 - \(R_Ω = 0.05 \, \text{Ω} \)
 - \(C_{\text{permicron}} = 0.2 \, \text{fF/μm} \)

 - \(R = 781 \, \text{Ω} \)
 - \(C = 1 \, \text{pF} \)

 \[
 \begin{align*}
 R & = 260 \, \text{Ω} \\
 C & = 167 \, \text{fF} \\
 \end{align*}
 \]

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - \(R = 2.5 \, \text{kΩ/μm} \) for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

 \[
 t_{pd} = \]
Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $R = 2.5 \, \text{k} \, \Omega$ for gates
 - Unit inverter: $0.36 \, \mu \text{m} \, n\text{MOS}, \ 0.72 \, \mu \text{m} \, p\text{MOS}$
 - $t_{pd} = 1.1 \, \text{ns}$

\[
\begin{array}{c}
\text{Driver} \\
690 \, \Omega \\
\text{Wire} \\
500 \, \text{fF} \\
\text{Load} \\
4 \, \text{fF}
\end{array}
\]

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1->0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{\text{gnd}} = C_{\text{top}} + C_{\text{bot}}$
- Effective C_{adj} depends on behavior of neighbors
 - Miller effect

\[
\begin{array}{c|c|c|c}
\text{B} & \Delta V & C_{\text{effAdj}} & \text{MCF} \\
\hline
\text{Constant} & & & 1 \\
\text{Switching with A} & & & 0 \\
\text{Switching opposite A} & & & 2
\end{array}
\]

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

\[
\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd}} + C_{\text{adj}}} \Delta V_{\text{aggressor}}
\]

Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{\text{aggressor}} = 2-4 \times R_{\text{victim}}$

\[
\begin{align*}
\Delta V_{\text{victim}} &= \frac{C_{\text{adj}}}{C_{\text{gnd}} + C_{\text{adj}}} \Delta V_{\text{aggressor}} \\
\tau_{\text{victim}} &= R_{\text{victim}} \left(C_{\text{gnd}} + C_{\text{adj}} \right) \\
\tau_{\text{aggressor}} &= R_{\text{aggressor}} \left(C_{\text{gnd}} + C_{\text{adj}} \right)
\end{align*}
\]
Coupling Waveforms

- Simulated coupling for $C_{adj} = C_{victm}$

Noise Implications

- So what if we have noise?
 - If the noise is less than the noise margin, nothing happens
 - Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
 - Dynamic logic never recovers from glitches
 - Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing
 - Layer
 - Shielding
Repeaters

- R and C are proportional to l
- RC delay is proportional to l^2
 - Unacceptably great for long wires

Repeaters

- R and C are proportional to l
- RC delay is proportional to l^2
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeaters Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length l/N
 - Wire Capacitance C_w/N, Resistance R_w/N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance $C_g W$, Resistance R/W

Repeaters Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length l
 - Wire Capacitance C_w, Resistance $R_w l$
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance $C_g W$, Resistance R/W

Repeaters Results

- Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

 \[
 \frac{l}{N} = \frac{2 R C'}{\sqrt{R_w C_w}}
 \]

 \[
 \frac{l_{req}}{l} = \left(2 + \sqrt{2}\right) \sqrt{R C' R_w C_w} = \text{~60-80 ps/mm in 180 nm process}
 \]

 \[
 W' = \frac{R C_w}{R C'}
 \]